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Preface

Approach After six editions of publishing with Jones and Bartlett Learning we are delighted
that we can now make this text available as an open-source document, and have designed it for
students in mathematics, physics, and engineering at the undergraduate level. Our goal is to
illustrate the theoretical concepts and proofs with practical applications, and to present them
in a style that is enjoyable for students to read. We believe both mathematicians and scientists
should be exposed to a careful presentation of mathematics. Our use of the term “careful” here
means paying attention to such things as ensuring required assumptions are met before using
a theorem, checking that algebraic operations are valid, and confirming that formulas have not
been blindly applied. We do not mean to equate care with rigor, as we present our proofs
in a self-contained manner that is understandable by students having studied multivariable
calculus. For example, we include Green’s theorem and use it to prove the Cauchy-Goursat
theorem, although we also include the proof by Goursat. Depending on the level of rigor desired,
students may look at one or the other—or both.

We aim to give sufficient applications to motivate and illustrate how complex analysis is
used in applied fields. Computer graphics help show that complex analysis is a computational
tool of practical value. The exercise sets offer a wide variety of choices for computational skills,
theoretical understanding, and applications that were class tested for six editions of the text
when it was available for purchase (i.e., prior to this free open-source edition). We provide
answers to most odd-numbered problems. For those problems that require proofs, we attempt
to model what a good proof should look like, often guiding students up to a point and then
asking them to fill in the details.

The purpose of the first six chapters is to lay the foundation for the study of complex
analysis and develop the topics of analytic and harmonic functions, the elementary functions,
and contour integration. Chapters 7 and 8, dealing with residue calculus and applications,
may be skipped if there is more interest in conformal mapping and applications of harmonic
functions, which are the topics of Chapters 9 and 10 respectively. For courses requiring even
more applications, Chapter 11 investigates Fourier and Laplace transforms.

Features The answers to most odd-numbered exercises should help instructors as they delib-
erate on problem assignments, and should help students as they review material. We present
conformal mapping in a visual and geometric manner so that compositions and images of curves
and regions can be more easily understood. We first solve boundary value problems for harmonic
functions in the upper half-plane so that we can use conformal mapping by elementary functions
to obtain solutions in other domains. We carefully develop the Schwarz-Christoffel transforma-
tion and present applications. We use two-dimensional mathematical models for applications
in the areas of ideal fluid flow, steady-state temperatures, and electrostatics. We accurately
portray streamlines, isothermals, and equipotential curves with computer-drawn figures.

iii



An early introduction to sequences and series appears in Chapter 4, which facilitates the
definition of the exponential function via series. The section on Julia and Mandelbrot sets
illustrates how complex analysis connects with contemporary topics in mathematics. Included
are computer-generated illustrations such as Riemann surfaces, contour and surface graphics
for harmonic functions, the Dirichlet problem, streamlines involving harmonic and analytic
functions, and conformal mapping. We also have a section on the Joukowski airfoil.
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Chapter 1

Complex Numbers

Get ready for a treat. You are about to begin studying some of the most beautiful ideas in
mathematics. They are ideas with surprises. They evolved over several centuries, yet they
greatly simplify extremely difficult computations, making some as easy as sliding a hot knife
through butter. They also have applications in a variety of areas, ranging from fluid flow,
to electric circuits, to the mysterious quantum world. Generally, they belong to the area of
mathematics known as complex analysis, which is the subject of this book. This chapter focuses
on the development of entities we now call complex numbers.

1.1 The Origin of Complex Numbers

Complex analysis can roughly be thought of as the subject that applies the theory of calculus to
imaginary numbers. But what exactly are imaginary numbers? Usually, students learn about
them in high school with introductory remarks from their teachers along the following lines:
“We can’t take the square root of a negative number. But let’s pretend we can and begin by
using the symbol i = /=1 .” Rules are then learned for doing arithmetic with these numbers.
At some level the rules make sense: if i = v/—1, it stands to reason that i> = —1. However,
it is not uncommon for students to wonder whether they are really doing magic rather than
mathematics.

If you ever felt that way, congratulate yourself!-—you are in the company of some of the great
mathematicians from the sixteenth through the nineteenth centuries. They also were perplexed
by the notion of roots of negative numbers. Our purpose in this section is to highlight some of
the episodes in the very colorful history of how thinking about imaginary numbers developed.
We intend to show you that, contrary to popular belief, there is really nothing imaginary about
“imaginary umbers.” They are just as real as “real numbers.”

Our story begins in 1545. In that year, the Italian mathematician Girolamo Cardano pub-
lished Ars Magna (The Great Art), a 40-chapter masterpiece in which he gave for the first time
a method for solving the general cubic equation

24+ asz® + a1z +ag=0. (1.1)

Cardano did not have at his disposal the power of today’s algebraic notation, and he tended
to think of cubes or squares as geometric objects rather than algebraic quantities. Essentially,
however, his solution began by making the substitution z = x — %. This move transformed

Equation (1.1) into a cubic equation without a squared term, which is called a depressed cubic.



To illustrate, begin with 23 + 922 + 24z + 20 = 0 and substitute z = x — @ =x— % =x—3.
The equation then becomes (z — 3)3 + 9(x — 3)? + 24(x — 3) + 20 = 0, which simplifies to
2? =3z +2=0.

You need not worry about the computational details here, but in general the substitution
z = x — % transforms Equation (1.1) into

3+ br4c=0, (1.2)

where b = a1 — %a%, and ¢ = —%alag + 2%@% + ag.

If Cardano could get any value of x that solved a depressed cubic, he could easily get a
corresponding solution to Equation (1.1) from the identity z = = — %. Happily, Cardano knew
how to solve a depressed cubic. The technique had been communicated to him by Niccolo
Fontana who, unfortunately, came to be known as Tartaglia (the stammerer) due to a speaking
disorder that was caused when he was 12 years old. (Evidently, during the Italian wars, French
troops sacked his home in Brescia, Italy in 1512, and struck Tartaglia in the face with a saber.)
The procedure was also independently discovered some 30 years earlier by Scipione del Ferro
of Bologna. Ferro and Tartaglia showed that one of the solutions to Equation (1.2) is

s c+ 02+b3+3 c 62+b3 (1.3)
TV T TV Ty 2 1ot '

Although Cardano would not have reasoned in the following way, today we can take this
value for  and use it to factor the depressed cubic into a linear and quadratic term. The
remaining roots can then be found with the quadratic formula. For example, to solve the (full)
cubic equation 23 4 922 4 24z + 20 = 0, use the substitution z =  — 3 to get 2> — 3z +2 =0,
which is a depressed cubic in the form of Equation (1.2). Next, apply the “Ferro-Tartaglia”
formula with b = —3 and ¢ = 2 to get

s/ 2 [22 (=3)3 4] 2 22 (=33 ,
m—\/2+ 4+27+\/2 Z+ o7 =v-14+vV-1=-2

Since x = —2 is a root, = + 2 must be a factor of 3 — 3z + 2. Dividing = + 2 into 23 — 3z + 2
gives 22 — 2x + 1 = (x — 1)2, so that the remaining (duplicate) roots are z = 1,7 = 1. The
solutions to z3 + 922 + 24z + 20 = 0 are obtained by recalling z = x — 3, which yields the three
roots z1 = —2—-3=-5,and 29 =23 =1—-3 = —-2.

So, by using Tartaglia’s work and a clever transformation technique, Cardano was able
to crack what had seemed to be the impossible task of solving the general cubic equation.
Surprisingly, this development played a significant role in helping to establish the legitimacy of
imaginary numbers. Roots of negative numbers, of course, had come up earlier in the simplest of
quadratic equations, such as 2 + 1 = 0. The solutions we know today as x = ++/—1, however,
were easy for mathematicians to ignore. In Cardano’s time, negative numbers were still being
treated with some suspicion, as it was difficult to conceive of any physical reality corresponding
to them. Taking square roots of such quantities was surely all the more ludicrous. Nevertheless,
Cardano made some genuine attempts to deal with v/—1. Unfortunately, his geometric thinking
made it hard to make much headway. At one point he commented that the process of arithmetic
that deals with quantities such as v/—1 “involves mental tortures and is truly sophisticated.” At
another point he concluded that the process is “as refined as it is useless.” Many mathematicians
held this view, but finally there was a breakthrough.



In his 1572 treatise L’Algebra, Rafael Bombelli showed that roots of negative numbers have
great utility. Consider the depressed cubic 23 — 152 — 4 = 0. Using Formula (1.3), we compute

T = €/Q+\/—121+</2—\/—121: :\3/24—11\/—14- \3/2—11\/—1.

Simplifying this expression would have been very difficult if Bombelli had not come up with
what he called a “wild thought.” He suspected that if the original depressed cubic had real
solutions, then the two parts of = in the preceding equation could be written as u 4+ vy/—1 and
u—v+y/—1 for some real numbers v and v. That is, Bombelli believed u+vv/—1 = /2 + 11/—1
and u — vy/—1 = v/2 — 11y/—1, which would mean

(u+vﬁ)3:2+llﬁ, and (u—vr) =2—11v/—1.

Then, using the well-known algebraic identity (a + b)® = a® + 3a2b + 3ab? + b, and assuming
that roots of negative numbers obey the rules of algebra, he obtained

(u+ov=1)* = u® + 3(u?)vv/—1 + 3(u) (vvV/=1)* + (vv/-1)?
=’ + 3(u)(vv/~1)* + 3(u?)ov/~1 + (vV/~1)°
= (u* — 3uv?) + (3uv — v)V—1
= u(u? — 3v%) + v(3u? — v?)V—-1 (1.4)
=2+ 11v/-1. (1.5)

By equating like parts of Equations (1.4) and (1.5) Bombelli reasoned that u(u? — 3v?) =
and v(3u? — v?) = 11. Perhaps thinking even more wildly, Bombelli then supposed that v and
v were integers. The only integer factors of 2 are 2 and 1, so the equation u(u? — 3v?) = 2
led Bombelli to conclude that v = 2 and u? — 3v?> = 1. From this conclusion it follows that
v? =1, or v = £1. Amazingly, u = 2 and v = 1 solve the second equation v(3u? — v?) = 11, so
Bombelli declared the values for u and v to be u = 2 and v = 1, respectively.

Since (2 + v/—1)% = 2 4+ 11y/—1, we clearly have 2 + v/—1 = /24 11y/—1. Similarly,
Bombelli showed that 2 — v/—1 = /2 — 11\/—1, so that

{’/2+11\/—T+{’/2—11ﬁ:(2+ﬁ)+(2—ﬁ):4, (1.6)

which was a proverbial bombshell. Prior to Bombelli, mathematicians could easily scoff at
imaginary numbers when they arose as solutions to quadratic equations. With cubic equations,
they no longer had this luxury. That # = 4 was a correct solution to the equation 23 —15x—4 = 0
was indisputable, as it could be checked easily. However, to arrive at this very real solution,
mathematicians had to take a detour through the uncharted territory of “imaginary numbers.”
Thus, whatever else might have been said about these numbers (which, today, we call complex
numbers), their utility could no longer be ignored.

1.1.1 Geometric Progress of John Wallis

As significant as Bombelli’s work was his results left many issues unresolved. For example,
his technique applied only to a few specialized cases. Could it be extended? Even if it could
be extended a larger question remained: What possible physical representation could complex
numbers have? That question remained unanswered for more than two centuries. Paul J.
Nahin’s book An Imaginary Tale: the Story of v/—1 describes the progress in answering it as



occurring in several stages. A preliminary step came in 1685 when the English mathematician
John Wallis published A Treatise of Algebra, both Historical and Practical. Among the many
contributions in that book two are particularly noteworthy for our purposes. They are displayed
in Wallis’ analysis of a problem from classical geometry that, at first glance, seems completely
unrelated to complex numbers.

Problem 1 (Classical Geometry Problem).
Construct a triangle determined by two sides and an angle not included between those sides.

We will get to Wallis’ contributions in a moment. First, observe that Figure 1.1 illustrates
the standard solution to this classical problem. Given side length a (represented by segment
AB), angle «a (determined by segments AB and BC'), and side length b, draw an arc of radius
b whose center is at point A. If the arc intersects segment BC' at points E and F', then the
resulting triangles ABE and ABF each satisfy the problem requirement.

Figure 1.1: The standard solution to Wallis’ problem

1.1.2 A Geometric Representation of Real Numbers

Wallis’ first contribution allowed him to associate numbers with the points F and F' of Figure
1.1. The association came by way of a construct that may sound completely trivial to us, but
that is only because we have been raised with Wallis’ idea: the number line. By choosing
an arbitrary point to represent the number zero on a given line, Wallis declared that positive
numbers could be viewed as corresponding distances to the right of zero, and negative numbers
as corresponding (positive) distances to the left of zero.

To complete the association refer to Figure 1.2 and think of segment BC as lying on a
portion of the x-axis. Then draw a perpendicular segment AD to BC and designate D to be
the origin. If the length of AD is ¢ the Pythagorean theorem gives v/b? — ¢2 for the length of
segments ED and DF'.

Figure 1.2: Wallis’ depiction of real numbers



Combining this result with Wallis’ number line results in points E and F' representing the

numbers
E=—-Vb—c2, and F=4+vVb2-c2

Thus, if b =5 and ¢ = 4, points F and F' would represent —3 and +3, respectively, because
E=—52—-42=-3 and F =+/52—42=+3.

From both an algebraic and geometric viewpoint this procedure only makes sense if the
stipulated length b is greater than or equal to c¢. If b were less than ¢ then the algebraic
expressions for points F and F (—vb?> — ¢ and +vb?> — ¢2) would be meaningless, as the
quantity b? — ¢? inside the square root would be negative. Viewed geometrically, if b were less
than ¢ then the arc of radius b that is centered at A would not be able to intersect segment
BC'. In other words, if b were less than ¢, Problem 1 would appear to have no solution.

1.1.3 A Geometric Representation of Complex Numbers

Appearances, of course, can be deceiving, and Wallis reinforced the truth of that ancient proverb
when he came up with his second—and bolder—contribution. It was a solution Problem 1 in
the case when b is less than c. Figure 1.3 illustrates how he did it. From the midpoint of AD
Wallis drew a circle with diameter AD. Then, with A as a center he drew an arc of radius b.
Because b is less than ¢ the arc will intersect the circle at two points, say E and F.

C. > X-axis

Figure 1.3: Wallis’ depiction of complex numbers

Again we get two triangles: ABE and ABF. Wallis claimed that these triangles each satisfy
the requirement of Problem 1. You might object to this construction on the grounds that angle
« is not part of either triangle. If you read the problem statement carefully, however, you will
notice that it never states that the angle o has to be part of any triangle, only that it must
play a role in determining a triangle. From this perspective Wallis completely satisfied the
requirement.

Notice, also, that points £ and F' are no longer on the z-axis as they were when b was
greater than ¢ (and when V0% — ¢? was a real number). They are now somewhere above the
z-axis, and it is not unreasonable to conclude that points E and F' give, respectively, geometric
representations of the expressions —v/b? — ¢ and +v/b? — ¢? when b is less than ¢ (and when
Vb? — 2 is a complex number).

Although Wallis only hinted at such a conclusion, he nevertheless helped set the stage for
thinking of real numbers as being embedded in a larger set of complex numbers, and that these
numbers could be represented as “points in the plane.” Unfortunately, if we tried to apply
Wallis” method to construct complex numbers we would find it had some serious defects. For
example, if b = 0 and ¢ = 1 the expression +v/b2 — ¢? becomes ++/—1, and points F and F



now coincide at point A. But we surely would not want to say that —v/—1 and ++/—1 are
the same number. Thus, even with Wallis’ work the jigsaw of getting a legitimate picture of
complex numbers remained. It would be yet another century before someone put most of the
pieces together.

1.1.4 Caspar Wessel Makes a Breakthrough

Points in the plane can also be thought of as vectors, which are directed line segments from
the origin to those points. In 1797 Caspar Wessel presented a paper to the Danish Academy
of Sciences in which he described how to manipulate vectors geometrically. This description
eventually led to the current representation of complex numbers.

To add two vectors, make a copy of the second vector and place its tail on the head of the
first vector. The resultant vector is the directed line segment drawn from the tail of the first
vector to the head of the second copy vector. Figure 1.4a illustrates the addition of vector b to
vector a.

When Wessel gave his paper the procedure for adding vectors was already known. The
unique contribution that he made was his description of how to multiply two vectors.

To understand Wessel’s thinking recall that any non-zero vector can be represented by
two quantities: its length, and its angular displacement from the positive x-axis. Figure 1.4b
illustrates this idea for vector a: its length is r, and its angular displacement from the positive
r-axis is a.

y y

v@“q’&
‘. z

o = Displacement
X X

(a) Addition of two vectors (b) Length and direction of a vector

Figure 1.4: The geometry of vectors

Wessel stated that, to multiply two vectors, the length of the product vector should be the
product of the lengths of its factors. Should the angular displacement of the product vector
likewise be the product of the angular displacements of its factors? Definitely not, and you will
see in the exercises why Wessel knew that such a provision would have been a bad idea. What,
then, should be the angular displacement of the product?

In answering this question Wessel drew an analogy from the multiplication of real numbers.
He observed that, if ¢ = ab, then £ = b = %, and § = a = {. In other words, the ratio of the
product to any given factor is the same as the ratio of the other factor to the number one.

What vector represents the number one? It seems obvious that, using the number line of
Wallis, it should be the directed line segment from the origin to the number one on the positive

z-axis. Let’s call this vector the standard unit vector, as illustrated in Figure 1.5.

With this identification in mind, and using the multiplication analogy just mentioned, Wessel
made a brilliant move. He reasoned that the (angular) displacement of the product of two



Figure 1.5: The standard unit vector

vectors should differ from the displacement of any given factor by the same amount that the
displacement of the other factor differs from the displacement of the standard unit vector.
That’s quite a mouthful; let’s see what it means.

What is the (angular) displacement of the standard unit vector? Clearly, its displacement is
zero radians, as it coincides with the positive z-axis. Thus, if vectors a and b have displacements
of a and (3, respectively, and vector ¢ = ab, then the displacement of ¢ should be a + (3, as
shown in Figure 1.6a. The reason for this assertion is that, with such an arrangement, Wessel’s
displacement protocol works out perfectly: the displacement of ¢ (which is « + /) differs from
the displacement of a (which is «) by §. This is the same amount that the displacement of b
(which is 3) differs from the displacement of the standard unit vector (which is 0). Likewise,
the displacement of ¢ differs from the displacement of b by «, which is the same amount that
the displacement of a differs from the displacement of the standard unit vector.

y y
c=ab
--------- o+ f y
Product vector | Original vector
i=v\-1
b 7
a aﬁ . <~.7§r
: X I < iZ= -1y N
(a) Multiplication of two vectors (b) The square root of —1

Figure 1.6: Wessel’s multiplication scheme for vectors

How does Wessel’s procedure lead to a geometric representation of complex numbers? Con-
sider what happens if a unit vector is drawn from the origin straight up the y-axis, and then
multiplied by itself. By Wessel’s rules the length of the product vector is one unit, as the
length of each factor is one unit. What about its direction? The angular displacement of the
original vector is § radians, so by Wessel’s rules again the product vector has a displacement of
5 + 5 = m radians. Thus, the product vector is aligned along the x-axis, but is directed from
the origin to the left by one unit, as shown in Figure 1.6b. Using Wallis’ number line we see
that the product vector is naturally identified with the number —1. Label the original vector
as 7. What do you conclude? Obviously, that 4> = —1, which must mean that 2 = v/—1. Neat!

Neat, yes, but the material we presented leading up to this result was (if you’ll pardon the
pun) complex, so you need not worry if you had some difficulty following it. Sections 1.2-1.6



will flesh out these ideas in much more detail.

It should be pointed out that Wessel was not the only mathematician—or even the first—
who began thinking of complex numbers as vectors, or, as points in the plane. As early as
1732 the great Swiss mathematician Leonard Euler (pronounced “oiler”) adopted this view
concerning the n solutions to the equation ™ — 1 = 0. You will learn shortly that these
solutions can be expressed as cos + v/—1sin @ for various values of §. Euler thought of them
as being located at the vertices of a regular polygon in the plane. Euler was also the first to use
the symbol i for v/—1. Today this notation is still the most popular, although some electrical
engineers prefer the symbol j instead so that they can use ¢ to represent current.

Two additional mathematicians deserve mention. The Frenchman Augustin-Louis Cauchy
(1789-1857) formulated many of the classic theorems that are now part of the corpus of complex
analysis. The German Carl Friedrich Gauss (1777-1855) reinforced the utility of complex
numbers when he used them in his several proofs of the fundamental theorem of algebra (see
Section 6.4). In an 1831 paper, he produced a clear geometric representation of = + iy by
identifying it with the point (z,y) in the coordinate plane. He also described how to perform
arithmetic operations with these new numbers.

It would be a mistake, however, to conclude that in 1831 complex numbers were transformed
into legitimacy. In that same year the prolific logician Augustus De Morgan commented in his
book, On the Study and Difficulties of Mathematics, “We have shown the symbol /—a to
be void of meaning, or rather self-contradictory and absurd. Nevertheless, by means of such
symbols, a part of algebra is established which is of great utility.”

There were, indeed, serious logical problems associated with complex numbers. For example,
with real numbers vab = 1/aVv/b so long as both sides of the equation are defined. Applying
this identity to complex numbers leads to 1 = v/1 = \/(—1)(—1) = /—1y/—1 = —1. Plausible
answers to these problems can be given, however, and you will learn how to resolve this apparent
contradiction in Section 2.2. De Morgan’s remark illustrates that many factors are needed
to persuade mathematicians to adopt new theories. In this case, as always, a firm logical
foundation was crucial, but so, too, was a willingness to modify some ideas concerning certain
well-established properties of numbers.

As time passed, mathematicians gradually refined their thinking, and by the end of the
nineteenth century complex numbers were firmly entrenched. Thus, as it is with many new
mathematical or scientific innovations, the theory of complex numbers evolved by way of a very
intricate process. But what is the theory that Tartaglia, Ferro, Cardano, Bombelli, Wallis,
Euler, Cauchy, Gauss, and so many others helped produce? That is, how do we now think of
complex numbers? We explore this question in the remainder of this chapter.

Exercises for Section 1.1 (Selected answers or hints are on page 427.)

1. Show that 2 — /=1 = /2 — 11/—1.

2. Explain why cubic equations, rather than quadratic equations, played a pivotal role in
helping to obtain the acceptance of complex numbers.

3. Find all solutions to the following depressed cubics.

(a) 2723 — 9x — 2 = 0. Hint: Get an equivalent monic polynomial.
(b) 23 — 27z + 54 = 0.



4. Explain why Wallis’s view of complex numbers results in —y/—1 being represented by the
same point as is v/ —1.

5. Use Bombelli’s technique to get all solutions to the following depressed cubics.
(a) 2% — 30z — 36 = 0.
(b) a3 —87x — 130 = 0.
(c) 3 —60x — 32 = 0.

6. Use Cardano’s technique (of substituting z = o — %) to solve the following cubics.

(a) 2% — 622 —32+18=0.
(b) 234322 — 242 + 28 = 0.

7. Is it possible to modify slightly Wallis’s picture of complex numbers so that it is consis-
tent with the representation used today? To help you answer this question, refer to the
article by Alec Norton and Benjamin Lotto, “Complex Roots Made Visible,” The College
Mathematics Journal, 15(3), June 1984, pp. 248-249.

8. Investigate library or web resources and write up a detailed description explaining why
the solution to the depressed cubic, Equation (1.3), is valid.

1.2 The Algebra of Complex Numbers, Part I

We have shown that complex numbers came to be viewed as ordered pairs of real numbers.
That is, a complex number z is defined to be

z=(,y), (1.7)
where = and y are both real numbers.

The reason we say ordered pair is because we are thinking of a point in the plane. The
point (2,3), for example, is not the same as (3,2). The order in which we write = and y in
Equation (1.7) makes a difference. Clearly, then, two complex numbers are equal if and only if
their x coordinates are equal and their y coordinates are equal. In other words,

(z,y) = (u,v) iff z=u and y=vo.

(Throughout this text, “iff” means if and only if.)

A meaningful number system requires a method for combining ordered pairs. The definition
of algebraic operations must be consistent so that the sum, difference, product, and quotient
of any two ordered pairs will again be an ordered pair. The key to defining how these numbers
should be manipulated is to follow Gauss’s lead and equate (x,y) with x 4 iy. Then, if z; =
(z1,y1) and zo = (x2,y2) are arbitrary complex numbers, we have

331:2/1) (1’273/2)

21+ 22 = (
= (z1 +1iy1) + (w2 + iy2)
= (
= (

r1 4+ x2) +i(yL + y2)
1+ X2, Y1 + Y2).

Thus, the following definitions should make sense.



Definition 1.1 (Addition).

21+ 22 = (21, 41) + (22, 92)
= (21 + 22, Y1 + ¥2). (1.8)
Definition 1.2 (Subtraction).

21 — 22 = (21,91) — (22, ¥2)
= (z1— 22, Y1 — Y2). (1.9)
Example 1.1. If z; = (3,7) and 25 = (5, —6), then
21+ 22=(3,7)+ (5,—6) = (8,1) and
21— 22 = (3,7) — (5, —6) = (—2,13).
We can also use the notation z; = 3+ 77 and 29 = 5 — 64:
21+22=038+7i)+(5—-6i) =8+ and
2 — 2= (34 7i) — (5—6i) = —2 + 13i.

Given the rationale we devised for addition and subtraction, it is tempting to define the
product z1z9 as z1z2 = (z122,y1%2) - It turns out, however, that this is not a good definition,
and we ask you in the exercises for this section to explain why. How, then, should products be
defined? Again, if we equate (z, y) with = + iy and assume, for the moment, that i = /—1
makes sense (so that i2 = —1), we have

2122 = (71, 91) (T2, Y2)
= (@1 + 1) (w2 + 1y2)
= 2129 + ix1yo + iToys + P2Y1Y2
= 1172 — Y1y2 + i(T1y2 + T201)
= (7172 — Y1Y2, T1Y2 + T291)-
It appears, therefore, that we are forced into the following definition.

Definition 1.3 (Multiplication).

2122 = (21,91) (22, Y2)
= (172 — y1y2, T1Y2 + Tay1). (1.10)
Example 1.2. If z; = (3, 7) and 22 = 5 — 6i, then
z129 = (3,7)(5,—6)
=B3:5=7-(=6),3-(=6)+5-7)
= (15442, —18 + 35)
= (57,17).
We get the same answer by using the notation z; = 3 4 77 and 29 = 5 — 6i:
z129 = (3,7)(5,—6)
= (34 7i)(5—6i)
= 15 — 18i + 35i — 42i*
=15—42(—1) 4+ (—18 + 35)i
=574 17:
= (57,17).

10



Of course, it makes sense that the answer came out as we expected because we used the
notation x 4+ ¢y as motivation for our definition in the first place. Exercise 14 asks you to show
that Wessel’s analogy for the norm and angular displacement discussed in Section 1.1.4 leads
to the same rule for multiplication as that given in Definition 1.3.

To motivate our definition for division, we proceed along the same lines as we did for
multiplication, assuming that zo # 0:

A1 (z1,91)

z (72,2)
~(x1 + i)
(w2 +iye)

We need to figure out a way to write the preceding quantity in the form z + iy. To do so, we
use a standard technique and multiply the numerator and denominator by xs —iy2, which gives

21 (@ i) (22 — dyo)

zo (z2+iy) (2 — iy2)
r172 + y1y2 + i(—T1Y2 + T291)

23+ y3

_ (371$2 + y1y2> n <_371?/2 + x2y1>
x5 + Y3 x5+ y3

_ <$1962 + Y2 —x1y2 + $2y1)

)

3 + 3 @3 + 3
Thus we finally arrive at a rather odd definition.
Definition 1.4 (Division).

Z1 (3317 yl)

22 (332, y2
<2?13?2 + Z/1Z/2 —x1Y2 + T2y1
)

, for z9 #0. (1.11)
73+ 13 3 + Y3 >

Example 1.3. If z; = (3,7) and 23 = (5, —6), then

2 (3.7 15—-42 18435\ [ 27 53
(5, —6) \25+36 25+36) \ 61 61/

As with the example for multiplication, we also get this answer if we use the notation = + iy:

1 (3, 7)
2z (5, —6)
347
5 —6i

(3470 (54 6i
B (5—6¢> <5+6¢>
15+ 18i + 350 + 42i*
25+ 30i — 30i — 36i2
15 —42+ (18 + 35)i
N 25 + 36

27 53, 27 53
= —— —|— —1 = — == =T .
61 61 61" 61

11




To perform operations on complex numbers, mathematicians use the notation = + iy and
engage in algebraic manipulations, as we did here, rather than apply the complicated-looking
definitions we gave for those operations on ordered pairs. This procedure is valid because we
used the x + iy notation as a guide for defining the operations in the first place. Remember,
though, that the = + iy notation is nothing more than a convenient bookkeeping device for
keeping track of how to manipulate ordered pairs. It is the ordered pair algebraic definitions
that form the real foundation on which the complex number system is based. In fact, if you were
to program a computer to do arithmetic on complex numbers, your program would perform
calculations on ordered pairs, using exactly the definitions that we gave.

It turns out that our algebraic definitions give complex numbers all the properties we nor-
mally ascribe to the real number system. Taken together, they describe what algebraists call a
field. In formal terms, a field is a set (in this case, the complex numbers) together with two
binary operations (in this case, addition and multiplication) having the following properties.

1. (P1) Commutative law for addition: z; + 23 = 23 + 21.
2. (P2) Associative law for addition: z; + (22 + 23) = (21 + 22) + 23.

3. (P3) Additive identity: There is a complex number w such that z + w = z for all
complex numbers z. The number w is obviously the ordered pair (0,0).

4. (P4) Additive inverses: For any complex number z, there is a unique complex number
71 (depending on z) with the property that z+n = (0,0). Obviously, if z = (z,y) = z+iy,
the number 7 will be (—z, —y) = —x — iy = —=z.

5. (P5) Commutative law for multiplication: z;z9 = 292;.
6. (P6) Associative law for multiplication: z;(2223) = (2122)23.

7. (P7) Multiplicative identity: There is a complex number ¢ such that z{ = z for all
complex numbers z. As you might expect, (1,0) is the unique complex number ¢ having
this property. We ask you to verify this identity in the exercises for this section.

8. (P8) Multiplicative inverses: For any complex number z = (z,y) other than the
number (0, 0), there is a complex number (depending on z), which we denote z~!, having
the property that zz~! = (1,0) = 1. Based on our definition for division, it seems

reasonable that the number z~! would be

1 (1,0) 1 1 T — 1y x ; ( —y >

z 2 :L“i‘ly 1»2_‘_:1/2 :1:2_1_2/2 :E2_|_y2

— z Y
T\ 22 )

We ask you to confirm this result in the exercises for this section.

9. (P9) The distributive law: z1(z2 + z3) = 2122 + 2123.

None of these properties is difficult to prove. Most of the proofs make use of corresponding
facts in the real number system. To illustrate, we give a proof of property (P1).

12



Proof of the commutative law for addition:

Let z1 = (21, y1) and 29 = (z2, y2) be arbitrary complex numbers. Then

21+ 22 = (21,91) + (22,92)
= (x1 + z2,y1 + ¥2) (by definition of addition of complex numbers)
( o+ T1,Y2 + yl) (by the commutative law for real numbers)
(.21?2, yg) (:El, yl) (by definition of addition of complex numbers)

= 29 + z1.

O]

Actually, you can think of the real number system as a subset of the complex number
system. To see why, let’s agree that, as any complex number of the form (¢, 0) is on the x axis,
we can identify it with the real number ¢t. With this correspondence, we can easily verify that
our definitions for addition, subtraction, multiplication, and division of complex numbers are
consistent with the corresponding operations on real numbers. For example, if z; and xo are
real numbers, then

T1x2 = (LL’l, O)(JJ‘Q, 0) (by our agreed correspondence)
= (.’L‘l xTo — 0, 0+ 0) (by definition of multiplication of complex numbers)
= (.Z‘l x9, 0) (confirming the consistency of our correspondence).

It is now time to show specifically how the symbol 7 relates to the quantity v/—1. Note that

(0,1)* = (0,1)(0, 1)
( — 1 0+ 0) (by definition of multiplication of complex numbers)
=(=1,0)

=—-1 (by our agreed correspondence).

If we use the symbol ¢ for the point (0, 1), the preceding identity gives
=(0,1)? = —1,

which means i = (0, 1) = v/—1. So, the next time you are having a discussion with your friends
and they scoff when you claim that v/—1 is not imaginary, calmly put your pencil on the point
(0,1) of the coordinate plane and ask them if there is anything imaginary about it. When they
agree there isn’t, you can tell them that this point, in fact, represents the mysterious v/—1 in
the same way that (1,0) represents the number 1.

We can also see more clearly now how the notation z + iy equates to (z,y). Using the
preceding conventions (i.e., x = (x,0), etc.), we have

T4y = (x, 0) + (0, 1)(y, 0) (by our previously discussed conventions)
= (.%', 0) + (0, y) (by definition of multiplication of complex numbers)
= (.7}, y) (by definition of addition of complex numbers).

Thus, we may move freely between the notations z + iy and (z,y), depending on which is
more convenient for the context in which we are working. Students sometimes wonder whether

13
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it matters where the “” is located in writing a complex number. It does not. Generally, most
texts place terms containing an “i” at the end of an expression, and place the before a
variable, but after a constant. Thus, we write x + iy, u + iv, etc., but 3 + 7i, 5 — 64 and so
forth. Because letters lower in the alphabet generally denote constants, you will usually (but
not always) see the expression a-+bi instead of a+4-ib. Many authors write quantities like 1+4+/3
instead of 1+ v/3i to make sure the “/” is not mistakenly thought to be inside the square root
symbol. Additionally, if there is concern that the “¢” might be missed, it is sometimes placed
before a lengthy expression, as in 2 cos(—3F 4 2n7) + i2sin(—2F + 2nr).

1530
1

We close this section with three important definitions and a theorem involving them. We
ask you for a proof of the theorem in the exercises.

Definition 1.5 (Real Part). The real part of z, denoted by Re(z), is the real number x.

Definition 1.6 (Imaginary Part). The imaginary part of z, denoted by Im(z), is the real
number y.

Definition 1.7 (Conjugate). The conjugate of z, denoted by Z, is the complex number (x, —y) =
T —1y.

Example 1.4. Re(—3+ 7i) = —3 and Re[(9,4)] =9, Im(—3 + 7i) = 7. Also, Im[(9,4)] =
4, "3+7i=-3-7i and (9, 4) = (9, —4).

Theorem 1.1. Suppose that z, z1, and zo are arbitrary complex numbers. Then the following
identities hold true:

zZ =z (1.12)

21+ 22 =71 + 2o (1.13)
% = 7 (1.14)
<2) = z;; (if 22 #0); (1.15)
Re(z) = = ;E; (1.16)
Im(z) = Z;iz, (1.17)
Re(iz) = —Im(z); 1.18
Im(iz) = Re(2). (1.19)

Because of what it erroneously connotes, it is a shame that the term imaginary is used in
Definition 1.6. It was coined by the brilliant mathematician and philosopher René Descartes
(1596-1650) during an era when quantities such as v/—1 were thought to be just that. Gauss,
who was successful in getting mathematicians to adopt the phrase complexr number rather than
imaginary number, also suggested that we use lateral part of z in place of imaginary part of z.
Unfortunately, that suggestion never caught on, and it appears we are stuck with what history
has handed down to us.

14



Exercises for Section 1.2 (Selected answers or hints are on page 427.)

1. Perform the required calculations and express your answers in the form a + bi.

i275.

1
R

)

)

) Re(7).

) Im(2).

) (i - 18,

) (7 —2i)(3i +5).
) Re(7 + 63) + Im(5 — 4i).
) Im(35%5).
)

)

(4—1)(1—34)
—1+27

2. Evaluate the following quantities.

(a) (1+19)(244)(3+1).
(b) 3+1)/(2+74).
(c) Re(i—1)3].
(d) Im[(1+14)2].
142 _ 4-3i

)

)

)

)
(e) 355 — 5=
(f) 2

)

)

i)

i)

=
—~

1+414)2
g
h

1

(
(

J
3. Show that zZ is always a real number.

4. Verify Identities (1.12)—(1.19).

5. Let P(z) = ap2™ + an_12"" ' +--- + a1z + ap be a polynomial of degree n.

(a) Suppose that a,,an—1,...,a1,a9 are all real. Show that if z; is a root of P, then z1
is also a root. In other words, the roots must be complex conjugates, something you
likely learned without proof in high school.

(b) Suppose not all of ay,an—1,...,a1,ap are real. Show that P has at least one root
whose complex conjugate is not a root. Hint: Prove the contrapositive.

(c) Find an example of a polynomial that has some roots occurring as complex conju-
gates, and some not.

6. Let z1 = (x1,y1) and z3 = (z2,y2) be arbitrary complex numbers. Prove or disprove the
following.

15



10.

11.

12.

13.

14.

15.

e(z1 + z2) = Re(z1) + Re(22).
e(z122) = Re(z1)
Im(z1 + 22) = Im(21) + Im(22).
I (21)

=

e(z1)Re(z2).

m(z122) = Im(z1)Im(z2).

Prove that the complex number (1,0) (which we identify with the real number 1) is the
multiplicative identity for complex numbers.

. Use mathematical induction to show that the binomial theorem is valid for complex

numbers. In other words, show that, if z and w are arbitrary complex numbers and n is
a positive integer, then

(2 +w)" = zn: (Z) =k where (Z) - M(nnik)'

k=0

. Let’s use the symbol * for a new type of multiplication of complex numbers defined by

21 * z9 = (129, y1y2). This exercise shows why this is a bad definition.

(a) Use the definition given in property (P7) and state what the multiplicative identity
¢ would have to be for this new multiplication.

(b) Show that, if you use this new multiplication, nonzero complex numbers of the form
(0,a) have no inverse. That is, show that, if z = (0, a), there is no complex number
w with the property that z xw = {, where ( is the multiplicative identity you found
in part (a).

Explain why the complex number (0,0) (which, you recall, we identify with the real
number 0) has no multiplicative inverse.

Prove property (P9), the distributive law for complex numbers.

Verify that, if z = (x,%), with = and y not both 0, then 271 = (1,0) (i.e., P %) Hint:

z
Let z = (x,y) and use the (ordered pair) definition for division to compute 2z~ = (%2))

Then, with the result you obtained, use the (ordered pair) definition for multiplication to
confirm that z2~! = (1,0) = 1.

From Exercise 12 and basic cancellation laws, it follows that z—1 = % = % The numerator
here, Zz, is trivial to calculate and, as the denominator 2% is a real number (Exercise 3),
computing the quotient = should be rather straightforward. Use this fact to compute

271 if 2 = 2 + 3i and again if z = 7 — 5i.
Recall the following trigonometric identities:

(a) cos(61 + 02) = cos by cos by — sin 0y sin Oy;

(b) sin(6; + 62) = cos 6y sin 6y + cos O sin ;.
Use these identities to show (using Wessel’s analogy for the norm and angular displacement
discussed in Section 1.1.4) that the ordered-pair definition for the product of two vectors

must agree with Equation (1.10) of the text. In other words, show that it must be the
case that, if z1 = (z1,y1) and z2 = (22, y2), then z122 = (z122 — y1y1, T1Y2 + T2Y1).

Show, by equating the real numbers x; and x9 with (z1,0) and (x2,0), respectively, that
the complex definition for division is consistent with the real definition for division.
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1.3 The Geometry of Complex Numbers, Part I

Complex numbers are ordered pairs of real numbers, so they can be represented by points in
the plane. In this section we show the effect that algebraic operations on complex numbers
have on their geometric representations.

We can represent the number z = = + iy = (x,y) by a position vector in the xy plane
whose tail is at the origin and whose head is at the point (z,y). When the zy plane is used
for displaying complex numbers, it is called the complex plane, or more simply, the z plane.
Recall that Re(z) = x and Im(z) = y. Geometrically, Re(z) is the projection of z = (x,y) onto
the x axis, and Im(z) is the projection of z onto the y axis. It makes sense, then, to call the =
axis the real axis and the y axis the imaginary axis, as Figure 1.7 illustrates.

Imaginary axis
y

x Real axis
Figure 1.7: The complex plane

Addition of complex numbers is analogous to addition of vectors in the plane. As we saw in
Section 1.2, the sum of z; = z1 +1iy1 = (z1,y1) and 29 = o +iys = (x2,y2) is (x1 + 2, Y1 +Y2).
Hence z; 4+ 29 can be obtained using the “parallelogram law” for vectors, where the vector
sum is represented by the diagonal of the parallelogram formed by the two original vectors, as
illustrated by Figure 1.8. The difference z; — 25 can be represented by the displacement vector
from the point zo = (x2,y2) to the point z; = (x1,y1), as Figure 1.9 depicts.

y Copy of vector z;— 2,
y Copy of vector z, 22 ‘ (positioned at the tail of vector z,)
(positioned at the tail of vector z,) IR .
1

1t 2

- —"{

Copy of vector z,
(positioned at the tail of vector z;)
X a-2

X .
y Copy of vector —z,
(positioned at the tail of vector z;)

Figure 1.8: The sum 21 + 29 Figure 1.9: The difference z; — 25

Definition 1.8 (Modulus). The modulus, or absolute value ,of the complex number z =
x + 1y is a nonnegative real number denoted by |z| and defined by the relation

|z] = Va2 + y2. (1.20)

The number |z| is the distance between the origin and the point z = (z,y). The only
complex number with modulus zero is the number 0. The number z = 4 4+ 3¢ has modulus
|4+ 3i| = V42 + 32 = /25 = 5, and is depicted in Figure 1.10.

The numbers |Re(z)|, |[Im(z)|, and |z| are the lengths of the sides of the right triangle OPQ
shown in Figure 1.11. The inequality |z1| < |z2| means that the point z; is closer to the
origin than the point zo. Although obvious from Figure 1.11, it is still profitable to work out
algebraically (which we ask you to do in the exercises) that

|z[ = [Re(2)| < |2[ and |y| = [Im(z)[ < [2]. (1.21)
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4+3i

y
P=(xy)=z2
0. 3) )=z
K [tm ()|
[Re (z)|
— —— X
0=(0,0) 0=(x0)

Figure 1.11: The modulus of z and its components

The difference z; — z9 represents the displacement vector from zo to z1, so the distance
between z; and z9 is given by |z; — z2|. We can obtain this distance by using Definitions 1.2
and 1.8 to obtain the familiar formula

diSt(Zh 22) = |21 - 22| = \/(fm - :L"2)2 + (yl - y2)2.

If 2= (z,y) = = + iy, then —z = (—z, —y) = —x — iy is the reflection of z through the origin,
and Z = (x,—y) = © — iy is the reflection of z through the x axis, as illustrated in Figure 1.12

y
0,
R (---y)----,z (x, )
' o=x4i0y
< ¢ "
(=x,0): 1(x, 0)
- - oo PRI "T=(x-)
—z=(=x,-y) 0, -y) =x—iy
=-x—1y Y

Figure 1.12: The geometry of negation and conjugation

We can use an important algebraic relationship to establish properties of the absolute value
that have geometric applications. Its proof is rather straightforward, and we ask you to give it
in the exercises for this section.

|22 = 2z. (1.22)

An important application of Identity (1.22) is its use in establishing the triangle inequality,
which states that the sum of the lengths of two sides of a triangle is greater than or equal to
the length of the third side. Figure 1.13 illustrates this inequality.

Theorem 1.2 (The triangle inequality). If z1 and zo are arbitrary complex numbers, then

|Z1—|—22| < |Zl|—|—|2’2|. (1.23)
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1t 2
|21 + 2o
[zl

[z4] ’Zl

X

Figure 1.13: The triangle inequality

Proof. We appeal to basic results:
|Zl + ZQ|2 = (21 + ZQ)(Zl + 22) (by Identity (1.22))

= (21 4 22)(z1 + 22) (by Identity (1.13))

= 2121 + 2122 + 2921 + 2922

=z |2 + 2125 + Z129 + |z2|2 (by Identity (1.22) and the commutative law)
= |z1)? + 217 + (2122) + |22/ (by Identities (1.12) and (1.14))

= |21]* + 2Re(21%2) + |22 (by Identity (1.16))

<z * 4 2|17 + |2 (by Identity (1.21))

= (|z1] + |22))*.

Taking square roots yields the desired inequality. O

Example 1.5. To produce an example of which Figure 1.13 is a reasonable illustration, let
21 = T+iand 20 = 3+ 5i. Then |z| = V49 +1 = /50 and |2z2| = v/9 + 25 = v/34. Clearly,
21 + zo = 10 + 64; hence |21 + 29| = /100 + 36 = v/136. In this case, we can verify the triangle
inequality without appealing to calculator approximations because

|21 4+ 22| = V136 = 2v34 = V34 + V34 < VE0 + V34 = |z1| + |22
We can also establish other important identities by means of the triangle inequality. Note
that

|z1] = [(21 + 22) + (—22)|
< |21+ 22 + | — 29
= |21 + 22| + |2

Subtracting |z2| from the left and right sides of this string of inequalities gives an important
relationship that is used in determining lower bounds of sums of complex numbers:
|2’1 + 22| > |21’ - |2’2|. (1.24)
From Identity (1.22) and the commutative and associative laws, it follows that

|2120] = (2122)(2122) = (2171) (22%2) = |21|? |22/

Taking square roots of the terms on the left and right establishes another important identity:
|z122] = |21|| 22| (1.25)
As an exercise, we ask you to show that
2| _ |z

—| =1+, provided =z #D0. (1.26)
22 |22]
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Example 1.6. If z; = 1+2i and 23 = 3+2i, then |21| = 1+ 4 = V5 and |2 = V9 + 4 = V/13.
Also 2129 = —1 + 8i; hence |z122] = /1 + 64 = /65 = v/5/13 = |21]|22].

Figure 1.14 illustrates the multiplication shown in Example 1.6. The length of the 229
vector apparently equals the product of the lengths of z; and z2, confirming Equation (1.25),
but why is it located in the second quadrant when both z; and 29 are in the first quadrant?
The answer to this question will become apparent to you as you read Section 1.4.

y

SEal

T 24 2

<-—+————1—t+—+—+— X

Figure 1.14: The geometry of multiplication

Exercises for Section 1.3 (Selected answers or hints are on page 428.)

1. Evaluate the following quantities. Put your answer in the form a+ib and show your work.

(a) |(1+l)(2+2)|

(b) |5

() |(1+Z)50\

(d) |2Z|, where z = = + iy.
) |

z — 1|, where z = z + iy.
2. Plot z; and 29 as vectors, then find and plot z; + 22 and z; — 29 when

(a) 21 =243 and 2o =4+ ..
(b) z1 = —1+42i and 22 = —2 + 3i..
(c) 21 =1+14v3 and 29 = —1 4+ iV/3.

3. Which of the following points lie inside the circle |z — i| = 2?7 Explain.
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10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

20.

21.

22.

. Prove the following Identities for z = = + iy:

(a) Identity (1.21): |z| = |Re(z)| < |z| and |y| = |[Im(2)| < |z|.
(b) Identity (1.22), the triangle inequality: |21 + 22| < |21| + |22].
(c) Identity (1.26):

_ =l
22|

provided 2z # 0.

Z1
22

. Show that nonzero vectors z; and zo are perpendicular iff Re(z;z2) = 0.

. Sketch the sets of points determined by the following relations.

(a) |[z+1—-2i| =2.
(b) Re(z+1) =0.
(c) |z+2i] < 1.

(d) Im(z — 2i) > 6.

Prove that v/2|z| > |Re(z)| + [Im(2)].

. Show that the point % is the midpoint of the line segment joining z; to zs.

. Show that |21 — 22| < |z1| + |22].

Prove that |z| =0 iff z = 0.

Show that, if z # 0, the four points z,Z, —z, and —Z are the vertices of a rectangle with
its center at the origin.

Show that, if z # 0, the four points z, iz, —z, and —iz are the vertices of a square with
its center at the origin.

Show that the equation of the line through the points z; and z can be expressed in the
form z = z; + t(22 — 21), where ¢ is a real number.

Show that nonzero vectors z; and zy are parallel iff Im(z1z3) = 0.
Show that |z12923] = |21]|22||23].
Show that |z"| = |z|™, where n is an integer.

Suppose that either |z| =1 or |w| = 1. Prove that |z — w| = |1 — Zw|.

n n
= 2 Ty 20 Jwel?.
k=1 k=1

n

> zpwy

k=1

Prove the Cauchy-Schwarz inequality:

Show that ‘]zl\ - \zQ]‘ < |z1 — 2.
Show that z1Z3 + Z129 is a real number.

If you study carefully the proof of the triangle inequality, you will note that the reasons for
the inequality hinge on Re(z1%z2) < |2172]. Under what conditions will these two quantities
be equal, thus turning the triangle inequality into an equality?

Prove that |21 — 22]% = |21|> — 2Re(2122) + |22/
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n

>

k=1

23. Prove by induction that

n
zk| < > |2k for all natural numbers n.
k=1

24. Let z; and z9 be two distinct points in the complex plane, and let K be a positive real
constant that is less than the distance between z; and zs.

(a) Show that the set of points {z : |z — 21| — |z — 22| = K} is a hyperbola with foci z;
and z9.
(b) Find the equation of the hyperbola with foci £2 that goes through the point 2 + 3i.

(c¢) Find the equation of the hyperbola with foci £25 that goes through the point 7+ 24s.

25. Let z; and 2z be two distinct points in the complex plane, and let K be a positive real
constant that is greater than the distance between 2z; and z».

(a) Show that the set of points {2 : |z — 21| + |2 — 22| = K} is an ellipse with foci z; and
z9.

(b) Find the equation of the ellipse with foci +3i that goes through the point 8 — 3i.

(c) Find the equation of the ellipse with foci +2i that goes through the point 3 + 2i.

1.4 The Geometry of Complex Numbers, Part 11

In Section 1.3 we saw that a complex number z = x + iy could be viewed as a vector in the
xy plane with its tail at the origin and its head at the point (x,y). A vector can be uniquely
specified by giving its magnitude (i.e., its length) and direction (i.e., the angle it makes with the
positive x axis). In this section, we focus on these two geometric aspects of complex numbers.

Let r be the modulus of z (i.e., = |z|) and let # be the angle that the line from the origin
to the complex number z makes with the positive x axis. (Note: The number 6 is undefined if
z =0). Then, as Figure 1.15(a) shows,

z = (rcosf, rsinf) =r(cosf + isinf). (1.27)
y y
) =X, y)=x+1iy

Z=xy)=x+iy ©0.5)9---"2—(rcos 0, rsin 6) = r(cos 0+ i sin 6)
0,y) 7, =(rcos 6, rsin 0) = r(cos 6 + i sin 6) . .

I :

| 0,

(x,0) ! x, 0)

() (b)

Figure 1.15: Polar representation of complex numbers

Definition 1.9 (Polar Representation). Identity (1.27) is known as a polar representation
of z, and the values v and 0 are called polar coordinates of z.
Example 1.7. If z =1+, then r = v2 and z = (V2cos F,v2sin T) = v2(cos T + isin ) is

a polar representation of z. The polar coordinates in this case are r = /2, and 6 = T

As Figure 1.15(b) shows, 6 can be any value for which the identities cos § = £ and sin = ¥
hold. For z # 0, the collection of all values of 6 for which z = r(cos @ + isin ) is denoted arg z.

Formally, we have the following definitions.
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Definition 1.10 (argz). If z # 0,
argz = {0 :z=r(cosf +isinh)}. (1.28)
If 0 € arg z, we say that 0 is an argument of z.
Note that we write § € arg z as opposed to 6§ = arg z. We do so because arg z is a set, and

the designation 6 € arg z indicates that 6 belongs to that set. Note also that, if §; € arg z and
0y € arg z, then there exists some integer n such that

01 = 05 + 2nm. (129)
Example 1.8. Because 1+ i = v/2(cos § + isin J), we have
(1+14) {7T+2 . - } mm 97 177
r =q- :n is an integer p = -+, —— — — —— ... .
arg i g Tnminisa ege VLV ERVEE

Mathematicians have agreed to single out a special choice of 8 € arg z. It is that value of 6
for which —7 < 0 < 7, as the following definition indicates.

Definition 1.11 (Argz). Let z # 0 be a complex number. Then
Argz =40 provided z=r(cosf+isinf) and —7<6O<m. (1.30)
If 0 = Arg z, we call 0 the argument of z.
Example 1.9. Arg(1+1i) = 7.
Remark 1.1. Clearly, if z = x + iy = r(cosf + isin ), where x # 0, then

arg z C arctan Q’
T

where arctan% ={0:tanf = %} Note that, for any real number t, arctant is a set (as opposed
to Arctant, which is a number). We specifically identify arg z as a proper subset of arctan ¥
because tan 6 has period w, whereas cos @ and sin 0 have period 2w. In selecting the proper values
for arg z, we must be careful in specifying the choices of arctan ¥ so that the point z associated
with v and 0 lies in the appropriate quadrant.

Example 1.10. If z = —/3 — i = r(cosf + isinf), then r = |z| = | — /3 —i| = 2 and

0 € arctan £ = arctan —= = {Z + n7 : nis an integer}. It would be a mistake to use Z as an

—V3
acceptable value for 6, as the point z associated with r = 2 and 6 = ¢ is in the first quadrant,
whereas —v/3 — i is in the third quadrant. A correct choice for 6 is § = ToT= —3T hecause

6
5 5
—\/g— 1 = 2cos <—g> + 12 sin (—g)

= 2cos <—57T + 2n7r> + 12 sin <_57r + 2n7r> ,

6 6

where n is any integer. Notice also, that
5
Arg(—V3 —i) = —%, and
) 51 . .
arg(—V3 —i) = 5 + 2nm : n is an integer » ,

which illustrates that arg(—+/3 — ) is indeed a proper subset of arctan _;\}g
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Example 1.11. If z = z 4+ iy = 0 + 4i, it would be a mistake to attempt to find Argz by
looking at arctan ¥, as x = 0, so £ is undefined. If z # 0 is on the y axis, then

Argz=—, if Imz > Oand

b | 3

Argz = —g, if Imz <O0.

In this case, Arg(4i) = § and arg(4i) = {5 + 2n7 : n is an integer}.

As you will see in Chapter 2, Arg z is a discontinuous function of z because it “jumps” by
an amount of 27 as z crosses the negative real axis.

In Chapter 5 we define e* for any complex number z. You will see that this complex
exponential has all the properties of real exponentials that you studied in earlier mathematics
courses. That is, e*1e*2 = ¢*17%2 and so on. You will also see, amazingly, that if z = = + iy,
then

e* = e = ¢%(cos y + isin y). (1.31)

We will establish this result rigorously in Chapter 5, but there is a plausible explanation we
can give now. If e* has the normal properties of an exponential, it must be that e+ = e%e®.
Now, recall from Calculus the values of three infinite series:

1 o (=D)" o~ (D" s
_ n : _ n
kg_ ] ko cosx = ngzo @n)] ", and sinx = ngzo 2n+ 1)!1: .

Substituting ¢y for = in the infinite series for e” gives

At this point our argument loses rigor because we have not talked about infinite series of
complex numbers, let alone whether such series converge. Nevertheless, if we merely take the
last series as a formal expression and split it into two series according to whether the index k
is even (k = 2n) or odd (k = 2n + 1), we get

vy iy Y

k is even k is odd
=1 > 1
2n, 2n 2n+1, 2n+41
=S Y
| |
2 (2n) 2 @2n+ 1)
)
_ Z 1 (i2)ny2n + Z #(iQ)niyZn-H
2 (2n))! < (2n+1)!
_ i 1 n 2n 4 Z )ny2n+1
< (2n) (2n + 1)!
= COs Y +¢siny

Thus, it seems the only possible value for e* is that given by Equation (1.31). We will use this
result freely from now on, and, as stated, supply a rigorous proof in Chapter 5.

24



If we set x = 0 and let 0 take the role of y in Equation (1.31), we get a famous result known
as Euler’s formula: ‘
¢ = (cosf + isin ) = (cos 6, sin ). (1.32)

If 0 is a real number, e will be located somewhere on the circle with radius 1 centered at
the origin. This assertion is easy to verify because

€] = V/cos2 0 +sin? 6 = 1. (1.33)

Figure 1.16 illustrates the location of e for various values of 6.

Yo ei= (0, 1) =i
e"=(-1,0)=-1 ///—e,%:(%’ v%)zéJrv‘T%i

/‘e’“" =e=(1,0)=1

The unit circle

Figure 1.16: The location of e for various values of
Note that, when 6 = 7, we get '™ = (cosm,sinm) = (—=1,0) = —1, so

€™ +1=0. (1.34)

Euler was the first to discover this relationship; it is referred to as Euler’s identity. It has
been labeled by many mathematicians as the most amazing relation in analysis—and with good
reason. Symbols with a rich history are miraculously woven together—the constant 7 used by
Hippocrates as early as 400 B.C.; e, the base of the natural logarithms; the basic concepts of
addition (4) and equality (=); the foundational whole numbers 0 and 1; and ¢, the number
that is the central focus of this book.

Euler’s Formula (1.32) is of tremendous use in establishing important algebraic and geomet-
ric properties of complex numbers. You will see shortly that it enables you to multiply complex
numbers with great ease. It also allows you to express a polar form of the complex number z
in a more compact way. Recall that, if » = |z| and 6 € arg z, then z = r(cos @ + isinf). Using
Euler’s Formula we can now write z in its exponential form:

z=re. (1.35)
Example 1.12. With reference to Example 1.10, with z = —v/3 — i, we have z = 2¢i(=57/6)
Together with the rules for exponentiation that we will verify in Chapter 5, Equation (1.35)
has interesting applications. If z; = r1e and 2z = r26i02, then
2129 = 1101 r0e'% = pryet@1102)
= riref[cos(6h + 02) + isin(61 + 62)]. (1.36)

Figure 1.17 illustrates the geometric significance of this equation.
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6;=0,+0,

r3=rrp 1"
6,
1/ .4

0,

~<—t+—+—+—+—+— —t—t—t—t X

Figure 1.17: The product of two complex numbers z3 = 2129

We have already shown that the modulus of the product is the product of the moduli; that is,
|z122| = |21||22|. Identity (1.36) establishes that an argument of z1z9 is an argument of z; plus
an argument of z9. It also answers the question posed at the end of Section 1.3 regarding why
the product z129 was in a different quadrant than either z; or zo. It further offers an interesting
explanation as to why the product of two negative real numbers is a positive real number. The
negative numbers, each of which has an angular displacement of 7 radians, combine to produce
a product that is rotated to a point with an argument of m + 7 = 27 radians, coinciding with
the positive real axis.

Using exponential form, if z £ 0, we can write arg z a bit more compactly as
argz = {0 : z = re?}. (1.37)
Doing so enables us to see a nice relationship between the sets arg(z122), arg z1, and arg zo:
Theorem 1.3. If z; = r1etf1 #0 and z5 = roeif2 # 0, then as sets,

arg(z129) = arg z1 + arg zo. (1.38)

Before proceeding with the proof of this theorem, we recall two important facts about sets.
First, to establish the equality of two sets, we must show that each is a subset of the other.
Second, the sum of two sets is the sum of all combinations of elements from the first and second
sets, respectively. In this case, arg z; + argze = {01 + 02 : 01 € arg zjandf € arg 2o }.

Proof. Let 0 € arg(z122). Because z129 = r1reei®1102) it follows from Formula (1.37) that
01 + 05 € arg(z122). By Equation (1.29) there is some integer n such that 6 = 6, + 02 + 2n.
Further, as z1 = rlewl, 0, € arg z;. Likewise, zo = roeif2 gives 0y € arg zo. But if 0y € arg zo,
then 0y + 2nm € argze. This result shows that = 6, + (02 + 2n7) € argz; + argze. Thus,
arg(z129) C arg z1 + arg zo. The proof that arg z; + arg zo C arg(z122) is left as an exercise. [J

Using Equality (1.35) gives 271 = % = reli@ = %e‘ig. In other words,
1 1 .
271 = Z[cos(—0) 4 isin(—0)] = e .
r r

Recalling that cos(—6) = cos(#) and sin(—6) = —sin(f), we also have

Z =1r(cos — isinh) = r[cos(—0) + isin(—0)] = re” ¥, and
2 M eos(0y — 03) + isin(fy — 0,)] = Lei®1=02),
z2 T2 9
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If z is in the first quadrant, the positions of the numbers z, Z, and z~! are as shown in
Figure 1.18 when |z| < 1. Figure 1.19 depicts the situation when |z| > 1.

y
Ti =0, 1)
z
0 \1=(1,0)
< X
z -6
The uni( circle | !

Figure 1.18: Relative positions of z, Z, and z~!, when |z| < 1

A

The unit circle

Il

Figure 1.19: Relative positions of z, z, and z~!, when |z| > 1

1

Example 1.13. If z = 1 + 4, then r = |2| = v/2 and 0 = 7. Therefore z7* =

%[cos(—%) +isin(—%)] = % [g - z?} and has modulus

Arg

N

ofS

1
V2
Example 1.14. If z; = 8 and 2z, = 1+14+/3, then representative polar forms for these numbers
are z1 = 8(cos § +isin §) and 2z = 2(cos § + isin §). Hence

8
225 [cos(g—g>+isin<g—g)} :4(cos%+isin%) :2\/§+2i.

Exercises for Section 1.4 (Selected answers or hints are on page 429.)

1. Find Arg z for the following values of z.
(a) 1—1.
) —V3+i.
(©) (—1—iv3)2
(d) (1-1)
2
) 1+iv/3°
) =1
)

1+iv/3
(1+0)2"
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(h) (1+4v3)(1+1).
2. Use exponential notation to show that

V3 —i)(1+iV3) =2v3 + 2i.

(a) (
(b) (1+14)3 = -2+ 2i.
2

)

b)
(c) 2i(v3+i)(1+iv3) =
(d) 1_’_1—4—42.

3. Represent the following complex numbers in polar form.

4. Show that arg z; + arg zo C arg 2129, thus completing the proof of Theorem 1.3.

5. Express the following in a + b form.

6. Show that argz; = arg zo iff z9 = cz1, where c¢ is a positive real constant.

7. Let z; = —1+iv/3 and 2o = —v/3+i. Show that the equation Arg(z129) = Arg z; +Arg 2o
does not hold for the specific choice of z; and z;. Why not?

8. Show that the equation Arg(z1z2) = Argz; + Arg 23 is true provided that the inequalities

™

—5 < Argz; < § and —§ < Argz; < 7 are satisfied. Describe the set of points that
meets this criterion.

9. Describe the set of complex numbers for which Arg(1) # —Arg(z). Prove your assertion.
10. Establish the identity arg(Zl) = arg 21 — arg 2.
11. Show that arg() = —arg .

12. Show that arg(z1z3) = arg z; — arg zo.
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13. Show that, if z # 0, then

(a) Arg(zz) =0.
(b) Arg(z + %) = 0 when Re(z) > 0.
14. Let 21, 2z, and z3 form the vertices of a triangle as indicated in Figure 1.20. Show that
a € arg(22=2L) = arg(ze — z1) — arg(zs — z1) is the angle at the vertex z;.

z3—21

15. Let z # zp. Show that the polar representation z — zp = p(cos ¢ + i sin ¢) can be used to
denote the displacement vector from 2y to z, as indicated in Figure 1.21

16. Show that Arg(z — w) = —Arg(z — w) iff z — w is not a negative real number.
y y
Z
3
22 P
a ¢
/4
B 2
21
X X
Figure 1.20: For Exercise 14 Figure 1.21: For Exercise 15

1.5 The Algebra of Complex Numbers, Part 11

The real numbers are deficient in the sense that not all algebraic operations on them produce
real numbers. Thus, for v/—1 to make sense, we must consider the domain of complex numbers.
Do complex numbers have this same deficiency? That is, if we are to make sense of expressions
such as v/1 + 4, must we appeal to yet another new number system? The answer to this question
is no. In other words, any reasonable algebraic operation performed on complex numbers gives
complex numbers. Later we show how to evaluate intriguing expressions such as i*. For now
we only look at integral powers and roots of complex numbers.

The important players in this regard are the exponential and polar forms of a non-zero
complex number z = re?? = r(cos@ + isin#). By the laws of exponents (which, you recall, we
have promised to prove in Chapter 5) we have

2" = (re®)" = "™ = " [cos(nb) + isin(nd)] and (1.39)

27 = (re®) ™" = e = 7" cos(—nh) + i sin(—nd)].

Example 1.15. Show that (—+v/3 — i) = —8i in two ways.

Solution:
(Method 1): The binomial formula (Exercise 8 of Section 1.2) gives

(V38 —i)? = (=V3)? + 3(—V3)*(—i) + 3(—V3)(—i)* + (—i)* = —8i.
(Method 2): Using Identity (1.39) and Example 1.12 yields

(V3 —i)? = (261-F))% = (23— 75)) =8 [cos (—127r> +isin <—157T>} = —8i.

Which method would you use if you were asked to compute (—v/3 — )300?
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Example 1.16. Evaluate (—v/3 — )30,

Solution:
(—V/3 — )% = (2€z‘(—%’7)>30 — 930,—i25m _ _930_

An interesting application of the laws of exponents comes to light when we put the equation
(€)™ = ™9 in its polar form. Doing so gives

(cos@ +isinf)" = (cosnb + isinnb), (1.40)

which is known as De Moivre’s formula, in honor of the French mathematician Abraham De
Moivre (1667-1754).

Example 1.17. Use De Moivre’s formula (see Equation (1.40)) to show that
cos 50 = cos® f — 10 cos® fsin? O + 5 cos O sin 6.

Solution:
If we let n =5 and use the binomial formula the left side of Equation (1.40) becomes

cos® 0 + i5cos* Osin  — 10 cos® @ sin? 6 — 10i cos® O sin® 6 + 5 cos @ sin* 6 + i sin® 6.

The real part of this expression is cos® @ — 10 cos? 6 sin? § + 5 cos @ sin* §. Equating this to the
real part of cos 50 + isin 50 on the right side of Equation (1.40) establishes the desired result.

A key aid in determining roots of complex numbers is a corollary to the fundamental theorem
of algebra. We prove this theorem in Chapter 6. Our proofs must be independent of the
conclusions we derive here because we are going to make use of the corollary now.

Theorem 1.4 (Corollary to the fundamental theorem of algebra). If P(z) is a polynomial of
degree n, (n > 0), with complex coefficients, then the equation P(z) = 0 has precisely n (not
necessarily distinct) solutions.

Proof. Refer to Chapter 6. O

Example 1.18. Let P(z) = 23 + (2 — 2i)2? + (=1 — 4i)z — 2. This polynomial of degree 3 can
be written as P(z) = (z —i)?(z + 2). Hence the equation P(z) = 0 has solutions z; = i, 23 = 1,
and z3 = —2. Thus, in accordance with Theorem 1.4, we have three solutions, with z; and 2
being repeated roots.

Theorem 1.4 implies that, if we can find n distinct solutions to the equation z" = ¢ (or
2" — ¢ = 0), we will have found all the solutions. We begin our search for these solutions by
looking at the simpler equation 2" = 1. Solving this equation will enable us to handle the more
general one quite easily.

To solve z" = 1 we first note that, from Identities (1.29) and (1.37), we can deduce an
important condition that determines when two nonzero complex numbers are equal. If we let
21 = 1€ and zp = r9€'%2, then

21 = 29 (i.e., riet? = rger) if r1=ry and 61 =060y + 27k, (1.41)

where k is an integer. That is, two complex numbers are equal iff their moduli agree and an
argument of one equals an argument of the other to within an integral multiple of 2.
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We now find all solutions to 2™ = 1 in two stages, with each stage corresponding to one
direction in the iff part of Relation (1.41) . First, we show that if we have a solution to z" =1,
then the solution must have a certain form. Second, we show that any quantity with that form
is indeed a solution.

For the first stage, suppose that z = re' is a solution to 2" = 1. Putting the latter
equation in exponential form gives r"e =1 ¢*Y so Relation (1.41) implies that 7" = 1 and
nf = 0+ 2nk. In other words,

ok
r=1 and =20 (1.42)
n

where k is an integer.

So, if z =re? is a solution to 2™ = 1, then Relation (1.42) must be true. This observation

completes the first stage of our solution strategy. For the second stage, we note that if » = 1, and
- - 21k ok .

0= %, then z = re’? = ¢! is indeed a solution to 2™ = 1 because 2" = (¢! n ) = 2™k =1,

For example, if n = 7and k = 3, then z = ¢iF is a solution to 27 = 1 because (eiﬁ?ﬁy =7 =1,

Furthermore, it is easy to verify that we get n distinct solutions to 2" = 1 (and, therefore, all
solutions, by Theorem 1.4) by setting k =0, 1, 2,...,n — 1. The solutions for k =n, n+1,...
merely repeat those for £k = 0, 1,..., because the arguments so generated agree to within an
integral multiple of 2. The n solutions can be expressed as

2o 2k 27k
zk:e’%:cosi+isini, for k=0,1,2,...,n—1. (1.43)
n n

They are called the nth roots of unity.

When k& = 0 in Equation (1.43), we get zg = s e 1, which is a rather trivial result.

The first interesting root of unity occurs when k = 1, giving z; = et . This particular value
shows up so often that mathematicians have given it a special symbol.

Definition 1.12 (Primitive nth root). If n is the smallest natural number for which 2™ =1,
then z is called a is called a primitive nth root of unity. Note that, from this definition, it
follows that

12w 2r .. 2w
Wp =€ n = CoS— —+ 18SIn —
n n

is a primitive nth root of unity for all positive integers n.

By De Moivre’s formula—Equation (1.40)—the nth roots of unity can be expressed as

1, wny w2, WL (1.44)

n? n

Geometrically, the nth roots of unity are equally spaced points that lie on the unit circle
C1(0) = {z : |z| = 1} and form the vertices of a regular polygon with n sides, which as we
mentioned in Section 1.1 is a fact discovered by Leonard Euler.

Example 1.19. The solutions to the equation 28 = 1 are given by the eight values z;, = i %
cos % +1sin %, for k=0, 1, 2,...,7. In Cartesian form, these solutions are +1, +i, +2+iv2
- 27

2
and iQL;/i. The primitive 8th root of unity is wg = ¢'s = ¢'7 = cos§ +isin’ = @ + z@

)

From Expressions (1.44) it is clear that wg = z1 of Equation (1.43), as Figure 1.22 illustrates.
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Figure 1.22: The eight eighth roots of unity

The procedure for solving 2" = 1 is easy to generalize in solving z" = c¢ for any nonzero
complex number c. If ¢ = pe’® = p(cos ¢ + isin¢) and z = 7€, then 2" = ¢ iff re™0 = pei?.

But this last equation is satisfied iff

r'*=p and
nf = ¢ + 2kw, wherekis an integer.

As before, we get n distinct solutions given by

prom 27k 21k
2k = p%el¢+3 E_ p% (cos(b—'_7T + 7sin W) , (1.45)
n n

fork=0,1,2,...,n—1.

Each solution in Equation (1.45) can be considered an nth root of c. Geometrically, the nth
roots of ¢ are equally spaced points that lie on the circle C' 1 (0) = {z : |2]| = p%} and form the
pn

vertices of a regular polygon with n sides. Figure 1.23 illustrates the case for n = 5.

') -
&.O ¢
5

23 24

4

Figure 1.23: The five solutions to the equation z° = ¢

It is interesting to note that if ¢ is any particular solution to the equation z™ = ¢, then

all solutions can be generated by multiplying ¢ by the various nth roots of unity. That is, the

solution set is
(1.46)

2 -1
Ca Cwnv CwTw ctcy ng :
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The reason for this is that, if (" = ¢, then forany j =0, 1, 2,...,n—1, (Cw%)” = Q”(w%)” =
¢("(wr)) = ¢"(1) = ¢, and that multiplying a number by w, = el increases an argument of
that number by 2%, so that Expressions (1.46) contains n distinct values.

Example 1.20. Find all cube roots of 8 = 8(cos § + isin 7).

Solution:

Formula (1.45) gives

T+ 27k T+ 27k
2 =2 [cos <2+37r> + ¢ sin <2+37T>] for k=0,1,2.

The Cartesian forms of the solutions are zg = /3 414, 21 = —v/3 + 14, and zp = —2i, as shown
in Figure 1.24

8i

A

\\ 2 ZO(,"

2

y

Figure 1.24: The point z = 8¢ and its three cube roots, 2y, 21, and 2z

Is the quadratic formula valid in the complex domain? The answer is yes, provided we are

careful with our terms.
1
Theorem 1.5 (Quadratic formula). The equation az? + bz +c = 0 has {M(bzijmc)?} as its

solution set for z, where by (b* — 4ac)% we mean all distinct square roots of that expression.

Proof. The proof is left as an exercise. O

Example 1.21. Find all solutions to the equation 22 + (1 + i)z + 5i = 0.
Solution:

The quadratic formula gives

_ =+ (A +)? — 4(1)(50)]

N

—(141) + (—18i)2
2(1) B 2 '

x (=5 +2km)

As —18i = 18¢(=3), Equations (1.45) give (—18i)z = 182¢' ~2 —, for k = 0 and 1. In

Cartesian form, this expression reduces to 3 — 3¢ and —3 + 3i. Thus, our solution set is
{—(1+i);-(3—3i)’ —(1+i)—g(—3+3i)}, or {1—2i, 24}
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In Exercise 5 of Section 1.2 we asked you to show that a polynomial with non real coefficients
must have some roots that do not occur in complex conjugate pairs. This last example gives
an illustration of such a phenomenon.

Exercises for Section 1.5 (Selected answers or hints are on page 430.)

1. Calculate the following.

(a) (1—iv3)3(V3+1i)?

i 3
(b) {5

(c) (V3+10)
2. Show that (v/3 4 4)* = —8 +i8/3 in two different ways:

(a) by squaring twice using the standard “FOIL” technique;
(b) by using De Moivre’s formula, given in Equation (1.40).

3. Use the method of Example 1.17 to establish trigonometric identities for cos 30 and sin 36.

4. Let z be any nonzero complex number and let n be an integer. Show that 2™ + (2)" is a
real number.

5. Find all the roots in both polar and Cartesian form for each expression.

(a) (—2+2i)3
(b) (~1)5

(c) (—64)1

(d) (8)

(e) (160)1

6. Prove Theorem 1.5, the quadratic formula.

7. Find all the roots of the equation z* — 423 + 622 — 42 + 5 = 0 given that z; =i is a root.
8. Solve the equation (z 4 1)3 = 23.

9. Find the three solutions to z% = 42 + i4/2.

10. Let m and n be positive integers that have no common factor. Show that there are n
distinct solutions to w™ = 2™, given by

m 0 + 2nk 0+ 2rk
W =7Tn (cosm(—i_w)—l—isinm(—i_ﬁ)) fork=0,1,...,n— 1.
n
11. Suppose that z #£ 1.
1—zntl

(a) Show that 1+ z+ 224 --- + 2" = =

(b) Use part (a) and De Moivre’s formula to derive Lagrange’s identity, which shows

1 sin[(n+ 16
that 1—|—COS€+C0829+'--+COSTM9:*—FM

.0 )
2 2sin 3

for 0 < 0 < 2m.
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12. If 1 = 29, 21,...,2n—1 are the nth roots of unity, prove that

(z—21)(z—22) - (z—2p 1) =14 2+22 - 271

13. Let z; # 1 be an nth root of unity. Prove that 1+ z, + zi + 4 zZ_l =0.

14. Equation (1.40), De Moivre’s formula, can be established without recourse to properties
of the exponential function. Note that this identity is trivially true for n = 1.
(a) Use basic trigonometric identities to show the identity is valid for n = 2.
(b) Use induction to verify the identity for all positive integers.

(c) How would you verify this identity for all negative integers?

15. Find all four roots of 2 +4 = 0, and use them to demonstrate that z*+4 can be factored
into two quadratics with real coefficients.

16.

(@)

Verify that Relation (1.41) is valid.

1.6 The Topology of Complex Numbers

In this section we investigate some basic ideas concerning sets of points in the plane. The first
concept is that of a curve. Intuitively, we think of a curve as a piece of string placed on a flat
surface in some type of meandering pattern. More formally, we define a curve to be the range
of a continuous complex-valued function z(t) defined on the interval [a,b]. That is, a curve C
is the range of a function given by z(t) = (z(t),y(t)) = z(t) + iy(t), for a < ¢ < b, where both
x(t) and y(t) are continuous real-valued functions. If both x(¢) and y(¢t) are differentiable and
not simultaneously zero (so that the tangent vector is never the zero vector), we say that the
curve is smooth. A curve for which z(¢) and y(t) are differentiable except for a finite number
of points is called piecewise smooth. We specify a curve C' as

C:z2(t) =a(t) +iy(t) = (z(t),y(t)) for a<t<b, (1.47)

and say that z(¢) is a parametrization for the curve C'. Note that, with this parametrization,
we are specifying a direction for the curve C, saying that C' is a curve that goes from the
initial point z(a) = (z(a),y(a)) = z(a) + iy(a) to the terminal point z(b) = (x(b),y(b)) =
x(b) + y(b). If we had another function whose range was the same set of points as z(t) but
whose initial and final points were reversed, we would indicate the curve that this function
defines by —C.

Example 1.22. Find parameterizations for C and —C, where C' is the straight line segment
beginning at zp = (zo, y0) and ending at z; = (z1,y1).

Solution:

Refer to Figure 1.25. The vector form of a line shows that the direction of C is z1 — z9. As 2z
is a point on C, its vector equation is

C:z(t)=z0+ (21 —20)t for 0<t<1, or (1.48)
C:z(t) = [xo+ (x1 — x0)t] +i[yo + (y1 — yo)t], for 0<t<1.

Using the same technique we see that one parametrization for —C' is

—C:v({t)=214+(20—21)t for 0<t<1. (1.49)
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z=z(1)
C z()

=2 (O)

T X

Figure 1.25: The straight-line segment C' joining zg to z;

Comparing Equations (1.48) and (1.49) illustrates a general principle: If C' is a curve
parametrized by z(t) for 0 < ¢ < 1, then one parametrization for —C will be v(¢) = z(1 — t),
for 0 <t <1.

A curve C having the property that z(a) = z(b) is said to be a closed curve. The
line segment of Expression (1.48) is not a closed curve. The range of z(t) = z(t) + iy(t),
where z(t) = sin2tcost, and y(t) = sin2¢sint for 0 < ¢ < 27 is a closed curve because
2(0) = (0,0) = z(2m). The range of z(t) is the four-leaved rose shown in Figure 1.26. Note

that, as t goes from 0 to 7, the point is on leaf 1; from § to m, it is on leaf 2; between 7 and

37”, it is on leaf 3; and finally, for ¢ between 37” and 2, it is on leaf 4.

Note further that, at (0,0), the curve has crossed over itself (at points other than those
corresponding with ¢ = 0 and ¢ = 27); we want to be able to distinguish when a curve does not
cross over itself in this way. The curve C' is called simple if it does not cross over itself, except
possibly at its initial and terminal points. In other words, the curve C : z(t), for a <t < b, is
simple provided that z(¢1) # z(t2) whenever t; # to, except possibly when ¢; = a and ty = b.

y
4

y

Figure 1.26: The four-leaved rose: x(t) = sin 2t cost, y(t) = sin2tsint for 0 <t < 27

Example 1.23. Show that the circle C with center zg = x¢ + iyp and radius rg can be
parametrized to form a simple closed curve.

Solution:
Note that C : 2(t) = (zo + rocost) + i(yo + rosint) = 2o + roe’t, for 0 < t < 27, gives the
required parametrization.

Figure 1.27 shows that, as ¢ varies from 0 to 2, the circle is traversed counterclockwise. If
you were traveling around the circle in this manner, its interior would be on your left. When
a simple closed curve is parametrized in this fashion, we say that the curve has a positive
orientation. We will have more to say about this idea shortly.

We need to develop some vocabulary that will help describe sets of points in the plane. One
fundamental idea is that of an e-neighborhood of the point zy. It is the open disk of radius
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Figure 1.27: The simple closed curve z(t) = zo + roe’, for 0 <t < 27

€ > 0 about zg shown in Figure 1.28. Formally, it is the set of all points satisfying the inequality
{z : |z — 20| < €} and is denoted by D.(zp). That is,

D.(z0) ={z: |z — 20| < &}. (1.50)

T X

Figure 1.28: An e-neighborhood of the point zg

Example 1.24. The solution sets of the inequalities |z| < 1, |z —i| < 2, and |z + 1+ 2i| < 3
are neighborhoods of the points 0, ¢, and —1 — 24, with radii 1, 2, and 3, respectively. They can
also be expressed as D;(0), D2(i), and Ds(—1 — 2i).

We also define D.(zg), the closed disk of radius ¢ centered at zy, and D?(z), the punc-
tured disk of radius ¢ centered at zj as

De(z0) ={z:]z— 20| <&} and (1.51)
DI(z0) ={2:0< |z — 2| < €} (1.52)

The point zg is said to be an interior point of the set S provided that there exists an
e-neighborhood of zg that contains only points of S; zg is called an exterior point of the set S
if there exists an e-neighborhood of zy that contains no points of S. If zy is neither an interior
point nor an exterior point of S, then it is called a boundary point of S and has the property
that each e-neighborhood of zy contains both points in S and points not in S. Figure 1.29
illustrates this situation.

The boundary of Dg(zp) is the circle depicted in Figure 1.27. We denote this circle Cr(zo)
and refer to it as the circle of radius R centered at z;. Thus

Cr(z0) = {2z : ]z — 20| = R}. (1.53)

We use the notation CE (z0) to indicate that the parametrization we chose for this simple closed
curve resulted in a positive orientation; Cp(z9) denotes the same circle, but with a negative
orientation. (In both cases, counterclockwise denotes the positive direction.) Using notation
that we have already introduced, we get Cx(20) = —C3# (20).
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Figure 1.29: The interior, exterior, and boundary of a set

Example 1.25. Find the interior, exterior, and boundary of S = D;(0) = {z : |2| < 1}.

Solution:

We show that every point of S is an interior point of S. Let zp be a point of S. Then |z| < 1,
and we can choose ¢ =1 — |zg| > 0. We claim that D.(z9) C S. If 2 € D.(z), then

|z| = |z — 20 + 20| < |z — 20| + |20] < &+ |20| =1—|20] + |20] = 1.

Hence the e-neighborhood of 2y is contained in S, which shows that zy is an interior point of
S. It follows that the interior of S is the set S itself.

Similarly, it can be shown that the exterior of S is {z : |z| > 1}, and the boundary of S is
the unit circle C1(0) = {z : |z| = 1}. These claims follow from that fact that, if zy = €% is any
point on the circle, then any e-neighborhood of zy will contain two points: (1 — %)ewo, which
belongs to S; and (1+ %)eieo, which does not belong to S. We leave the details of demonstrating
this claim as an exercise.

The point zy is called an accumulation point of the set S if, for each ¢, the punctured
disk D?(zp) contains at least one point of S. We ask you to show in the exercises that the
set of accumulation points of D1(0) is D1(0), and that there is only one accumulation point of
S = {% :n =1, 2,...}, namely, the point 0. We also ask you to prove that a set is closed if
and only if it contains all of its accumulation points.

A set S is called an open set if every point of S is an interior point of S. Thus, Example
(1.25) shows that D;(0) is open. A set S is called a closed set if it contains all its boundary
points. A set S is said to be a connected set if every pair of points z; and zo contained in
S can be joined by a curve that lies entirely in S. Roughly speaking, a connected set consists
of a “single piece.” The unit disk D;(0) = {z : |z| < 1} is a connected open set. We ask you
to verify in the exercises that, if z; and 29 lie in D1(0), then the straight-line segment joining
them lies entirely in D7 (0). The annulus A = {z : 1 < |z| < 2} is a connected open set because
any two points in A can be joined by a curve C' that lies entirely in A, as shown in Figure 1.30.

The set B ={z: |z +2| < 1or |z—2| <1} consists of two disjoint disks. We leave it as an
exercise for you to show that the set is not connected, as shown in Figure 1.31.

We call a connected open set a domain. In the exercises we ask you to show that the open
unit disk D1(0) = {2 : |2| < 1} is a domain and that the closed unit disk D1(0) = {z: |z| < 1}
is not a domain. The term domain is a noun and is a type of set. In Chapter 2 we note that it
also refers to the set of points on which a function is defined. In the latter context, it does not
necessarily mean a connected open set.
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Y
Figure 1.30: The annulus A = {z: 1 < |z| < 2} is a connected set

y

-3 -1 1 3

Figure 1.31: The set B={z: |2+ 2| <1 or |z — 2| < 1} is not a connected set

Example 1.26. Show that the right half-plane H = {z : Re(z) > 0} is a domain.

Solution:

First we show that H is connected. Let zg and z; be any two points in H. We claim the
obvious: the straight-line segment C' given by Equation (1.48) lies entirely within H. To prove
this claim, we let z(t*) = 29 + (21 — 20)t*, for some t* € [0, 1], be an arbitrary point on C. We
must show that Re(z(t*)) > 0. Now,

Re(z(t*)) = Re(zo + (21 — zo)t*)
= Re(Zo(l — t*)) + Re(zlt*)
= (1 —t")Re(z0) + t"Re(21). (1.54)
If t = 0, the last expression becomes Re(zp), which is greater than zero because zp € H.
Likewise, if ¢ = 1, then the right side of Equation (1.54) reduces to Re(z1), which also is

positive. Finally, if 0 < ¢* < 1, then each term in Equation (1.54) is positive, so in this case we
also have Re(z(t*)) > 0.

To show that H is open, we suppose without loss of generality that Re(zp) < Re(z1). We
claim that D.(z9) C H, where ¢ = Re(zp). We leave the proof of this claim as an exercise.
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A domain, together with some, none, or all its boundary points, is called a region. For
example, the horizontal strip {z : 1 < Im(z) < 2} is a region. A set formed by taking the union
of a domain and its boundary is called a closed region; thus {z : 1 < Im(z) < 2} is a closed
region. A set is said to be a bounded set if it can be completely contained in some closed
disk, that is, if there exists an R > 0 such that for each z in S we have |z| < R. The rectangle
given by {z : |z| < 4and|y| < 3} is bounded because it is contained inside the disk D5(0). A
set that cannot be enclosed by any closed disk is called an unbounded set.

We mentioned earlier that a simple closed curve is positively oriented if its interior is on the
left when the curve is traversed. How do we know, though, that any given simple closed curve
will have an interior and exterior? Theorem 1.6 guarantees that this is indeed the case. It is
due in part to the work of the French mathematician Camille Jordan (1838-1922).

Theorem 1.6 (The Jordan curve theorem). The complement of any simple closed curve C' can
be partitioned into two mutually exclusive domains, I and E, in such a way that I is bounded,
E is unbounded, and C is the boundary for both I and E. In addition, I U E U C' is the entire
complex plane. The domain I is called the interior of C, and the domain E is called the
exterior of C.

The Jordan curve theorem is a classic example of a result in mathematics that seems obvious
but is very hard to demonstrate, and its proof is beyond the scope of this book. Jordan’s original
argument, in fact, was inadequate, and not until 1905 was a correct version finally given by the
American topologist Oswald Veblen. The difficulty lies in describing the interior and exterior
of a simple closed curve analytically, and in showing that they are connected sets. For example,
in which domain (interior or exterior) do the two points depicted in Figure 1.32 lie? If they are
in the same domain, how, specifically, can they be connected with a curve? If you appreciated
the subtleties involved in showing that the right half-plane of Example 1.26 is connected, you
can begin to appreciate the obstacles that Veblen had to navigate.

Although an introductory treatment of complex analysis can be given without using this
theorem, we think it is important for the well-informed student at least to be aware of it.

Inl
)

21

Figure 1.32: Are z; and 2o in the interior or exterior of this simple closed curve?
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Exercises for Section 1.6 (Selected answers or hints are on page 431.)

1. Find a parametrization of the line that

joins the origin to the point 1 4+ 4.

(a
(b
(c
(d

joins the point 1 to the point 1 + 3.
joins the point ¢ to the point 1 4 .

~—_— — —

joins the point 2 to the point 1 + 3.
2. Sketch the curve z(t) = 2 + 2t +i(t + 1)

(a) for —1 <t <0.
(b) for 1 <t <2.

Hint: Use x = t?> + 2t, y = t + 1 and eliminate the parameter t.
3. Find a parametrization of the curve that is a portion of the parabola 3 = 22 that
(a) joins the origin to the point 2 + 4i.
(b) joins the point —1 + 4 to the origin.
(c) joins the point 1+ i to the origin.

4. This exercise completes Example (1.26): Suppose that Re(z9) > 0. Show that Re(z) > 0
for all z € D.(zp), where € = Re(zo).

5. Find a parametrization of the curve that is a portion of the circle |z| = 1 that joins the
point —% to ¢ if
(a) the curve is the right semicircle.

(b) the curve is the left semicircle.
6. Show that D;(0) is a domain and that D1(0) = {2 : |2| < 1} is not a domain.
7. Find a parametrization of the curve that is a portion of the circle C7(0) that joins the
point 1 to 7 if
(a) the parametrization is counterclockwise along the quarter circle.
(b) the parametrization is clockwise.

8. Fill in the details to complete Example (1.25). That is, show that

(a) the set {z:|z| > 1} is the exterior of the set S.
(b) the set C'1(0) is the boundary of the set S.

9. Consider the following sets.
(i) {z : Re(z) > 1}.

(i) {z: —1 <Im(z) < 2}.

(if)) {z: ]z —2—q| < 2.

(iv) {z : |z + 3i] > 1}.

(v) {re? :0<r<land —% <0<Z}.

(vi) {re?? :r>1and T <6< Z}.

(vil) {z: |z| < lor |z —4] < 1}.
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10.

11.
12.

13.

14.

15.

16.

17.

(a) Sketch each set.

(b) State, with reasons, which of the following terms apply to the above sets: open;
connected; domain; region; closed region; bounded.

Show that D;(0) is connected. Hint: Show that if z; and zy lie in D;(0), then the
straight-line segment joining them lies entirely in D;(0).

Let S = {z1,29,...,2,} be a finite set of points. Show that S is a bounded set.
Prove that the boundary of D.(zg) is the circle Cc(2p).

Let S be the open set consisting of all points z such that |z 4+ 2| < 1 or |z — 2| < 1. Show
that S is not connected.

Prove 0 is the only accumulation point of {% n=1,2,...}.
Regarding the relation between closed sets and accumulation points,

(a) Prove that if a set is closed, then it contains all its accumulations points.

(b) Prove that if a set contains all its accumulation points, then it is closed.
Prove that D;(0) is the set of accumulation points of

(a) The set D1(0).
(b) The set Dj(0).

Memorize and be prepared to illustrate all the terms in bold in this section.
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Chapter 2

Complex Functions

Overview

The last chapter developed a basic theory of complex numbers. For the next few chapters we
turn our attention to functions of complex numbers. They are defined in a similar way to
functions of real numbers that you studied in calculus; the only difference is that they operate
on complex numbers rather than real numbers. This chapter focuses primarily on very basic
functions, their representations, and properties associated with functions such as limits and
continuity. You will learn some interesting applications as well as some exciting new ideas.

2.1 Functions and Linear Mappings

A complex-valued function f of the complex variable z is a rule that assigns to each complex
number z in a set D one and only one complex number w. We write w = f(z) and call w
the image ofz under f. A simple example of a complex-valued function is given by the
formula w = f(z) = 22. The set D is called the domain of f, and the set of all images
{w = f(2) : z € D} is called the range of f. When the context is obvious, we omit the phrase
complex-valued, and simply refer to a function f, or to a complex function f.

We can define the domain to be any set that makes sense for a given rule, so for w = f(z) =
2%, we could have the entire complex plane for the domain D, or we might artificially restrict
the domain to some set such as D = D;(0) = {z : |2| < 1}. Determining the range for a
function defined by a formula is not always easy, but we will see plenty of examples later on.

In some contexts functions are referred to as mappings or transformations.

In Section 1.6, we used the term domain to indicate a connected open set. When speaking
about the domain of a function, however, we mean only the set of points on which the function
is defined. This distinction is worth noting, and context will make clear the use intended.

Just as z can be expressed by its real and imaginary parts, z = x + iy, we write f(z) = w =
u+ iv, where u and v are the real and imaginary parts of w, respectively. Doing so gives us the
representation

w= f(z) = f(z,y) = f(z +iy) = u+iv.

Because u and v depend on x and y, they can be considered to be real-valued functions of the
real variables x and y; that is,

u=u(z,y) and v=ov(z,vy).
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Combining these ideas, we often write a complex function f in the form

f(2) = f(z +iy) = u(z,y) +iv(z,y). (2.1)
Figure 2.1 illustrates the notion of a function (mapping) using these symbols.
y v

Domain u=u(x,y) Range
D v=v(x,y) R

| ) | !
Figure 2.1: The mapping w = f(2)

We now give several examples that illustrate how to express a complex function.
Example 2.1. Write f(z) = 2% in the form f(z) = u(z,y) + iv(z,y).

Solution:

Using the binomial formula, we obtain

f(2) = (z +iy)* = 2t + 42y + 622 (iy)* + 4z (iy)® + (iy)?
= (2" — 62y + ') + i(4a’y — day?),
so that u(z,y) = 2 — 62%y% + y* and v(z,y) = 423y — 429>,
Example 2.2. Express the function f(z) = ZRe(z) + 2% + Im(2) in the form f(z) = u(z,y) +
w(x,y).
Solution:

Using the elementary properties of complex numbers, it follows that
f(z) = (& —iy)x + (2° — y* +i2zy) +y = (227 —y* +y) +i(ay),

so that u(z,y) = 22% — y?> + y and v(z,y) = 2y.

Examples 2.1 and 2.2 show how to find u(z,y) and v(z,y) when a rule for computing f is
given. Conversely, if u(z,y) and v(z,y) are two real-valued functions of the real variables x
and y, they determine a complex-valued function f(z,y) = u(x,y) + iv(x,y), and we can use
the formulas

zZ+Zz zZ—Z
and y = -
2 21

to find a formula for f involving the variables z and Z.

€r =

Example 2.3. Express f(z) = 42? + i4y? by a formula involving the variables z and Z.

Solution:

Calculation reveals that

=22+ 2:24+7% —i(2% - 2224+ 7?)

=(1—i)22+ 2+ 2)2z+ (1 — )72
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Using z = re®? in the expression of a complex function f may be convenient. It gives us the
polar representation

F(z) = f(re) = u(r,0) + iv(r,0), (2.2)
where v and v are real functions of the real variables r and 6.

Remark 2.1. For any specific function f, the functions u and v defined here will be differ-
ent from those of Equation (2.1) because Equation (2.1) involves Cartesian coordinates and
Equation (2.2) involves polar coordinates.

Example 2.4. Express f(z) = 22 in both Cartesian and polar form.

Solution:

For the Cartesian form, a simple calculation gives

f(z) = fla+iy) = (z +1iy)* = (2% = y*) +i(22y) = u(z,y) + wv(z,y)
so that
u(z,y) =2* —y?, and v(z,y) = 2zy.
For the polar form, we refer to Equation (1.39) to get
f(re??y = (re?)? = 2™ = 12 cos 20 + ir?sin 20 = U(r,0) + iV (r,6),

so that
U(r,0) =r*cos20 and V(r,0) = r*sin 26.

Once we have defined u and v for a function f in Cartesian form, we must use different symbols
if we want to express f in polar form. As is clear here, the functions v and U are quite different,
as are v and V. Of course, if we are working only in one context, we can use any symbols we
choose.

Example 2.5. Express f(z) = z° 4+ 42?2 — 6 in polar form.

Solution:

Again, using Equation (1.39) we obtain

f(2) = f(re?) = r°(cos 50 + i sin 560) + 4r%(cos 20 + i sin 20) — 6
= (r° cos 50 4 412 cos 20 — 6) + i(r® sin 560 + 472 sin 26)
= u(r,0) + iv(r, ).

We now look at the geometric interpretation of a complex function. If D is the domain of
real-valued functions u(z,y) and v(z,y), the equations

u=u(z,y) and v=ov(x,y)

describe a transformation (or mapping) from D in the xy plane into the uv plane, also called
the w plane. Therefore, we can also consider the function

w = f(z) =ulz,y) +iv(z,y)

to be a transformation (or mapping) from the set D in the z plane onto the range R in the w
plane. This idea was illustrated in Figure 2.1. In the following paragraphs we present some
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additional key ideas. They are staples for any kind of function, and you should memorize all
the terms in bold.

If A is a subset of the domain D of f, the set B = {f(z) : z € A} is called the image of
the set A, and f is said to map A onto B. The image of a single point is a single point, and
the image of the entire domain, D, is the range, R. The mapping w = f(z) is said to be from
A into S if the image of A is contained in S. Mathematicians use the notation f: A +—— S to
indicate that a function maps A into S.

Figure 2.2 illustrates a function f whose domain is D and whose range is R. The shaded
areas depict that the function maps A onto B. The function also maps A into R, and, of course,
it maps D onto R.

y V

w=f)=u+iv

Domain

C

A

N

A

Range

R
v \/

u

Figure 2.2: f maps A onto B; f maps A into R

The inverse image of a point w is the set of all points z in D such that w = f(z). The
inverse image of a point may be one point, several points, or nothing at all. If the last case
occurs then the point w is not in the range of f. For example, if w = f(z) = iz, the inverse
image of the point —1 is the single point i, because f(i) = i(i) = —1, and i is the only point
that maps to —1. In the case of w = f(z) = 22, the inverse image of the point —1 is the set
{i,—i}. You will learn in Chapter 5 that, if w = f(z) = e?, the inverse image of the point 0 is
the empty set—there is no complex number z such that e* = 0.

The inverse image of a set of points, S, is the collection of all points in the domain that
map into S. If f maps D onto R it is possible for the inverse image of R to be function as well,
but the original function must have a special property: a function f is said to be one-to-one
if it maps distinct points z; # z2 onto distinct points f(z1) # f(22). Many times an easy way
to prove that a function f is one-to-one is to suppose f(z1) = f(22), and from this assumption
deduce that z; must equal zo. Thus, f(z) = iz is one-to-one because if f(z1) = f(z2), then
iz1 = izo. Dividing both sides of the last equation by ¢ gives z1 = zo. Figure 2.3 illustrates the
idea of a one-to-one function: distinct points get mapped to distinct points.

y ; )
I —_— A
.v®
________ P
B ol .
__________________

T - < > U
' . v

Figure 2.3: A one-to-one function

The function f(z) = 22 is not one-to-one. This is because —i # i, but f(i) = f(—i) = —1.
Figure 2.4 illustrates this situation: at least two different points get mapped to the same point.
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Figure 2.4: A function that is not one-to-one

In the exercises we ask you to demonstrate that one-to-one functions give rise to inverses
that are functions. Loosely speaking, if w = f(z) maps the set A one-to-one and onto the set
B, then for each w in B there exists exactly one point z in A such that w = f(z). For any such
value of z we can take the equation w = f(z) and “solve” for z as a function of w. Doing so
produces an inverse function z = g(w) where the following equations hold:

g(f(z)) =z forall z€ A and
flg(w)) =w forall we B. (2.3)

Conversely, if w = f(z) and z = g(w) are functions that map A into B and B into A,
respectively, and Equations (2.3) hold, then f maps the set A one-to-one and onto the set B.

Further, if f is a one-to-one mapping from D into T, and if A is a subset of D, then f
is a one-to-one mapping from A onto its image B. We can also show that, if ( = f(z) is a
one-to-one mapping from A onto B and w = ¢(() is a one-to-one mapping from B onto S, then
the composite mapping w = g( f (z)) is a one-to-one mapping from A onto S.

We usually indicate the inverse of f by the symbol f~!. If the domains of f and f~! are A
and B, respectively, we can rewrite Equations (2.3) as

f_l(f(z)) =z forall z€¢ A and
f(f Hw))=w forall we B. (2.4)

Also, for zp € B and wg € A,
wo = f(z0) iff fNwo) =2 and 2= f Y wo) iff f(z0) = wo. (2.5)

Example 2.6. If w = f(z) = iz for any complex number z, find f~!(w).

Solution:

We can easily show f is one-to-one and onto the entire complex plane. We solve for z, given
w = f(z) =1z, to get z = ¥ = —iw. By Equations (2.5), this result implies that fHw) = —iw
for all complex numbers w.

Remark 2.2. Once we have specified f~(w) = —iw for all complex numbers w, we note that
there is nothing magical about the symbol w. We could just as easily write f~1(z) = —iz for all

complex numbers z.

We now show how to find the image B of a specified set A under a given mapping u + iv =
w = f(z). The set A is usually described with an equation or inequality involving 2 and y. Using
inverse functions, we can construct a chain of equivalent statements leading to a description of
the set B in terms of an equation or an inequality involving u and v.

47



Example 2.7. Show that the function f(z) = iz maps the line y = = + 1 in the zy plane onto
the line v = —u — 1 in the w plane.
Solution:

(Method 1): With A = {(x,y) : y = z+1}, we want to describe B = f(A). Welet z = z+iy € A
and use Equations (2.5) and Example 2.6 to get

utiv=w=f(z)EB<= fl(w)=z=x+iyc A
—= —iweA
< v—iweA
<~ (v,—u) € A
= —u=v-+1
<= v=—u—1,

where <= means “if and only if.”

Note what this result says: uw+ i = w € B <= v = —u — 1. The image of A under f,
therefore, is the set B = {(u,v) : v = —u — 1}.

(Method 2): We write u+iv = w = f(z) = i(x+iy) = —y+iz and note that the transformation
can be given by the equations u = —y and v = z. Because A is described by A ={z +iy:y =
x + 1}, we can substitute u = —y and v = z into the equation y = x + 1 to obtain —u = v + 1,
which we can rewrite as v = —u — 1. If you use this method, be sure to pay careful attention
to domains and ranges.

We now look at some elementary mappings. If we let B = a + ib denote a fixed complex
constant, the transformation

w=T(z)=2z4+B=x+a+i(y+0b)

is a one-to-one mapping of the z plane onto the w plane and is called a translation. This
transformation can be visualized as a rigid translation whereby the point z is displaced through
the vector B = a + ib to its new position w = T'(z). The inverse mapping is given by

z=T Y w)=w—-B=u—a+i(v—0>)

and shows that 7" is a one-to-one mapping from the z plane onto the w plane. The effect of a
translation is depicted in Figure 2.5.

y v

w=1(z)

w=z+B

B=a+ib > B=a+ib
u=x+a
v=y+b
z=x+1y

X u

Figure 2.5: The translation w =T(z) =2+ B=x+a+i(y + b)

If we let o be a fixed real number, then for z = re', the transformation

w = R(z) = 26! = reei® = pel0+e)
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is a one-to-one mapping of the z plane onto the w plane and is called a rotation. It can be
visualized as a rigid rotation whereby the point z is rotated about the origin through an angle
a to its new position w = R(z). If we use polar coordinates and designate w = p’® in the w
plane, then the inverse mapping is

2= RN (w) = we™ = pe'Pe™ = peil®=a),

This analysis shows that R is a one-to-one mapping of the z plane onto the w plane. The effect
of rotation is depicted in Figure 2.6.

~
<

W=R(Z) (|)=6+(x

i(0 + o)

w=re <
—_— v
p=r Q
0=060+0
r 0

Figure 2.6: The rotation w = R(z) = reif+a)

Example 2.8. The ellipse centered at the origin with a horizontal major axis of four units and
vertical minor axis of two units can be represented by the parametric equation

s(t) =2cost+isint = (2cost, sint) for0 <t < 2.

Suppose that we wanted to rotate the ellipse by an angle of 7/6 radians and shift the center of
the ellipse 2 units to the right and 1 unit up. Using complex arithmetic, we can easily generate
a parametric equation r(t) that does so:

r(t) = s(t)e's + (24 1)

(
(2cost +isint) (cos%+isin%) +(2+1)

™ . . T . . T . ™ .
<2costcosg — smtsmg> +1 (2costsmg —i—smtcosg) +(2+1)

1 3
(\/gcost— 2simt—l—2> +1 (cost+ \Q[Sint—l— 1)

1 3
= (\/gcost—2sint+2, cost—l—\gsint—i—l) for 0<t<2m.

Figure 2.7 shows parametric plots of these ellipses.

If we let K > 0 be a fixed positive real number, then the transformation
w=_95(2)=Kz=Kz+iKy

is a one-to-one mapping of the z plane onto the w plane and is called a magnification. If
K > 1, it has the effect of stretching the distance between points by the factor K. If K < 1,
then it reduces the distance between points by the factor K. The inverse transformation is

given by
1 1
=8 w)= —w=—u+i—v

K K K
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Figure 2.7: Plots of (a) the original ellipse; (b) the rotated ellipse

y v

Ki+ Ki i

X | + + u

1 K 1 K

Figure 2.8: The magnification w = S(z2) = Kz = Kz + iKYy

and shows that S is one-to-one mapping from the z plane onto the w plane. The effect of
magnification is shown in Figure 2.8.

Finally, if we let A = Ke' and B = a + ib, where K > 0 is a positive real number, then
the transformation
w=L(z)=Az+ B

is a one-to-one mapping of the z plane onto the w plane and is called a linear transformation.
It can be considered as the composition of a rotation, a magnification, and a translation. It
has the effect of rotating the plane through an angle given by a = Arg(A), followed by a
magnification by the factor K = |A|, followed by a translation by the vector B = a 4 ib. The

inverse mapping is given by z = L™} (w) = %w — % and shows that L is a one-to-one mapping

from the z plane onto the w plane.

Example 2.9. Show that the linear transformation w = iz + i maps the right half-plane
Re(z) > 1 onto the upper half-plane Im(w) > 2.
Solution:

(Method 1): Let A = {(z,y) : > 1}. To describe B = f(A), we solve w =iz + i for z to get
z=""" = —jw—1= f"}(w). Using Equations (2.5) and the method of Example 2.7 we have

utiv=w=f(z)EB= fl(w)=2¢€ A
= —iw—-1cA
—=v-1—-wmecA
— (v—-1,-u)ed
<—v—-1>1
< v > 2.

Thus B = {w = u+ iv : v > 2}, which is the same as saying Im(w) > 2.
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(Method 2): When we write w = f(z) in Cartesian form as
w=u+iv=ilr+iy)+i=—-y+i(z+1),

we see that the transformation can be given by the equations u = —y and v = x+1. Substituting
x = v—11in the inequality Re(z) = > 1 gives v—1 > 1, or v > 2, which is the upper half-plane
Im(w) > 2.

(Method 3): The effect of the transformation w = f(z) is a rotation of the plane through the
angle a = § (when z is multiplied by 7) followed by a translation by the vector B = i. The
first operation yields the set Im(w) > 1. The second shifts this set up 1 unit, resulting in the

set Im(w) > 2.

We illustrate this result in Figure 2.9.

i w=iz+i \ \\Q

- Z

/ \

Figure 2.9: The linear transformation w = f(z) =iz +1¢

Translations and rotations preserve angles. First, magnifications rescale distance by a fac-
tor K, so it follows that triangles are mapped onto similar triangles, preserving angles. Then,
because a linear transformation can be considered to be a composition of a rotation, a magnifi-
cation, and a translation, it follows that linear transformations preserve angles. Consequently,
any geometric object is mapped onto an object that is similar to the original object; hence
linear transformations can be called similarity mappings.

Example 2.10. Show that the image of D1(—1—14) = {z: |2+ 1+4| < 1} under the transfor-
mation w = (3 — 4i)z + 6 + 2i is the open disk D5(—1+3i) = {w : |w + 1 — 3i| < 5}.
Solution:

wg_ﬁji, so if we designate the range of f as B, then

The inverse transformation is z =

w= f(2) € B<= f(w)=2¢€ Dy(~1—1)
w—6—21

3—4i
w—06—2¢
R
w—6—21

’ 3— 4
= w—6—-2i+(1+10)(3—49)| <5

— |w+1-3i| <5.

S Dl(—l — Z)
+1+4<L

F 14| [3—4i] <1-]3— 4

Hence the disk with center —1 — ¢ and radius 1 is mapped one-to-one and onto the disk with
center —1 + 3¢ and radius 5 as shown in Figure 2.10.
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w=5(2)

<l L 1y x <l T R .y 7}

Y \

Figure 2.10: The mapping w = S(z) = (3 — 4i)z + 6 + 21

Example 2.11. Show that the image of the right half-plane Re(z) > 1 under the linear trans-
formation w = (=14 4)z — 2 + 3i is the half-plane v > u + 7.

Solution:

The inverse transformation is given by

w+2—-3i  u+2+i(v—23)
—14i —1+i

Zz =

)

which we write as
—u+v—5+ —u—-v+1
7 .

2 2

Substituting x = %”_5 into Re(z) =z > 1 gives _“‘;”_5 > 1, which simplifies to v > u + 7.
Figure 2.11 illustrates the mapping.

Tty =

w=f(2)
_—

<l Loy -l v !

Y
=

Y \

Figure 2.11: The mapping w = f(z) = (-1 +1i)z — 2+ 3i

Exercises for Section 2.1 (Selected answers or hints are on page 431.)

1. Find f(1+ i) for the following functions.
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. Let f(z) = 22! — 527 + 92%. Use polar coordinates to find
(a) f(—=1+1).
(b) f(1+14V3).

. Express the following functions in the form wu(z,y) + iv(x,y).

. Express the following functions in the polar coordinate form w(r, 6) + iv(r,0).

(a) f(z) = 2% +72°.
(b) f(z) =2°+7%

(¢) For what values of z are the above expressions valid? Why?

. Let f(2) = f(x +iy) = e cosy + ie” siny. Find

(a) f(0).

(b) f(im).

(c) FG%).

(d) f(2+1im)

(e) f(3mi).

(f) Is f a one-to-one function? Why or why not?

. For 2 #£0, let f(2) = f(z +1iy) = 5 In(z? + y?) + iarctan £. Find

. For 2z #0, let f(z) =Inr + 146, where r = |z|, and § = Arg z. Find

(a
(b
(c
(d

)
)
)
)
(e) Is f a one-to-one function? Why or why not?

. A line that carries a charge of % coulombs per unit length is perpendicular to the z plane
and passes through the point zy. The electric field E(z) at the point z is a vector, and
its intensity is its magnitude |E(z)|. It varies inversely as the distance from zj, and is

directed along the line from 2z to z. Show that E(z) = == k, , where k is some constant.

Note: in Section 10.11 we show that, in fact, k = ¢, so that actually E(z) = =4Z

zZ—Z0"
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10.

11.

12.

13.

14.

15.

16.

17.

18.

. Use the result of Exercise 8 to find the points z where the total charge E(z) = 0 given

the following conditions.

a) Three positively charged rods carry a charge of £ coulombs per unit length and pass
2
through the points 0, 1 — ¢, and 1 + 1.

(b) A positively charged rod carrying a charge of 4 coulombs per unit length passes
through the point 0 and positively charged rods carrying a charge of ¢ coulombs per
unit length pass through the points 2 +¢ and —2 + 1.

Suppose that f maps A into B, g maps B into A, and that Equations (2.3) hold.

(a) Show that f is one-to-one.
(b) Show that f maps A onto B.

Suppose f is a one-to-one mapping from D onto T and that A is a subset of D.

(a) Show that f is one-to-one from A onto B, where B = {f(z) : z € A}.
(b) Show, additionally, that if g is one-to-one from B onto S, then h(z) is one-to-one
from A onto S, where h(z) = f(g(z)).

For each part that follows produce a graphical and mathematical description of the images
of the following sets when mapped by the function w = f(z) = (3 +4i)z — 2 4 i (see, for
example, the solution to Example 2.11). In each case also indicate graphically the images
of z1 =0, 20 =1—14, and z3 = 2.

(a) The disk |z — 1| < 1.

(b) The linexz =t,y=1—-2t for —oco <t < oc.

(c) The half-plane Im(z) > 1.

Let w = (2 + i)z — 2i. Find the triangle onto which the triangle with vertices z; =
—2+4+14, 20 = =2+ 2i, and z3 = 2 + ¢ is mapped.

Let S(z) = Kz, where K > 0 is a positive real constant. Show that the equation
|S(21) — S(22)| = K|z1 — 22| holds and interpret this result geometrically.

Find the linear transformations w = f(z) that satisfy the following conditions.
(a) The points z; = 2 and z3 = —3i map onto w; = 1 + 4 and wy = 1.

(b) The circle |z| = 1 maps onto the circle |w — 3 + 2i| = 5, and f(—i) = 3 + 3i.

(¢) The triangle with vertices —4 + 2i, —4 + 7i, and 1 4 2i maps onto the triangle with
vertices 1, 0, and 1 + 4, respectively.

Give a proof that the image of a circle under a linear transformation is a circle. Hint: Let
the circle have the parameterization x = xg + Rcost , y = yo + Rsint.

Prove that the composition of two linear transformations is a linear transformation.

Show that a linear transformation that maps the circle |z — z9| = R; onto the circle
|w — wp| = Ry can be expressed in the form

A(w - 'U}())Rl = (Z — Zo)RQ, where ‘A’ =1.
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. 1
2.2 The Mappings w = 2" and w = z»
In this section we turn our attention to power functions.
For z = re # 0, we can express the function w = f(z) = 2% in polar coordinates as
w= f(z) = 2% =r2e?,

If we also use polar coordinates for w = pe’® in the w plane, we can express this mapping by
the system of equations
p=r> and ¢ = 20.

Because an argument of the product (2)(z) is twice an argument of z, we say that f doubles
angles at the origin. Points that lie on the ray r > 0, # = « are mapped onto points that lie on
the ray p > 0, ¢ = 2a. If we now restrict the domain of w = f(z) = 22 to the region

A={re?:r>0 and —g<9§g}, (2.6)

then the image of A under the mapping w = z? can be described by the set
B={pe":p>0 and —7<¢<m}, (2.7)
which consists of all points in the w plane except the point w = 0.
The inverse mapping of f, which we denote g, is then

1
_ 5 50
_p2€ y

N|=
-

z=g(w)=w

where w € B. That is,
1 1 . Arg(w)
z :g(w) = w2 = ’wyzez 2,

where w # 0. The function g is so important that we call special attention to it with a formal
definition.

Definition 2.1 (Principal Square Root). The function

. Arg(w

elT) for w #0, (2.8)

N

1
g(w) = w2 = |w|
1s called the principal square root function.

We leave as an exercise to show that f and g satisfy Equations (2.3) and thus are inverses
of each other that map the set A one-to-one and onto the set B and the set B one-to-one and
onto the set A, respectively. Figure 2.12 illustrates this relationship.

What are the images of rectangles under the mapping w = 2z2? To find out, we use the
Cartesian form

2

w=u+iv=f(z)=2%=a2>—y? +i2zy = (2% — 9°, 2zy) = (u,v)

and the resulting system of equations

u=2xz>—y? and v=2zy. (2.9)
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Figure 2.12: The mappings w = 22 and z = w3

Example 2.12. Show that the transformation w = f(z) = 22, for z # 0, usually maps
vertical and horizontal lines onto parabolas and use this fact to find the image of the rectangle
{(z,y): 0<z<a, 0<y<b}.

Solution:

Using Equations (2.9), we determine that the vertical line x = a is mapped onto the set of
points given by the equations u = a? — y? and v = 2ay. If a # 0, then y = 5. and

o V7
=a‘ - —. 2.10
u=a’= ( )
Equation (2.10) represents a parabola with vertex at a2, oriented horizontally, and opening to
the left. If @ > 0, the set {(u,v) : u = a® — 9%, v = 2ay} has v > 0 precisely when y > 0, so the

part of the line z = a lying above the = axis is mapped to the top half of the parabola.

The horizontal line y = b is mapped onto the parabola given by the equations u = 22 — b?
and v = 2xb. If b # 0, then as before we get

, 0
=—-b"4+ —. 2.11
Equation (2.11) represents a parabola with vertex at —b?, oriented horizontally and opening to
the right. If b > 0, the part of the line y = b to the right of the y axis is mapped to the top half
of the parabola because the set {(u,v) : u = 2% — b%, v = 2bx} has v > 0 precisely when z > 0.

Quadrant I is mapped onto quadrants I and II by w = 22, so the rectangle 0 < z < a, 0 <y <b
is mapped onto the region bounded by the top halves of the parabolas given by Equations (2.10)
and (2.11) and the u axis. The vertices 0, a, a + ib, and ib of the rectangle are mapped onto
the four points 0, a2, a®> — b + i2ab, and —b?, respectively, as indicated in Figure 2.13.

Finally, we can verify that the vertical line x = 0, y # 0 is mapped to {(—y%,0) : y # 0}.
This is simply the set of negative real numbers. Likewise, the horizontal line y = 0, z # 0 is
mapped to the set {(z2,0) :  # 0}, which is the set of positive real numbers.

What happens to images of regions under the mapping

. Arg(z)
w=f(z) = |z]7e"" 5

SIS

1, «
=r2e'2 for z=re? £0,

where —71 < 6 < 7? If we use polar coordinates for w = pe’® in the w plane, we can represent

this mapping by the system
0
p:T‘% and ¢ = 7 (2.12)
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Figure 2.13: The transformation w = 22

Equations (2.12) indicate that the argument of f(z) is half the argument of z and that the
modulus of f(z) is the square root of the modulus of z. Points that lie on the ray r > 0, 0 = «
are mapped onto the ray p > 0, ¢ = §. The image of the z plane (with the point z = 0 deleted)

consists of the right half-plane Re(w) > 0 together with the positive v axis. The mapping is
shown in Figure 2.14

y 24
A
1
w=2z2
NG
,,,,,,,,,,,,,,, = < = > i
P DR oS T =o
/ . 1 RN S~
. N p=ri AN
\ S 1 .
/ S
y N ¢:§ 1A -
2 R
1 \ \\
-T<O<T AR
y ¢

Figure 2.14: The mapping w = 22
We can use 1knowledge of the inverse mapping z = w? to get further insight into how the
mapping w = z2 acts on rectangles. If we let z = z + iy # 0, then

z:w2:u2—z}2+i2uv,

and we note that the point z = x + ¢y in the z plane is related to the point w = u +iv = 2% in
the w plane by the system of equations

r=u?—v? and y=2uww. (2.13)

Example 2.13. Show that the transformation w = f(z) = 22 usually maps vertical and
horizontal lines onto portions of hyperbolas.

Solution:

Let a > 0. Equations (2.13) map the right half-plane given by Re(z) > a (i.e., z > a) onto
the region in the right half-plane satisfying u? — v? > a and lying to the right of the hyperbola
u? —v? = a. If b > 0, Equations (2.13) map the upper half-plane Im(z) > b (i.e., y > b) onto the
region in quadrant I satisfying 2uv > b and lying above the hyperbola 2uv = b. This situation
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\
1
w=22
i =
9
2_
2uv=>b
y=b 4 z=w?2 1
-
X=a uz—vz =a
< T T —> X T T —> U
-3 3 6 9 1 2 3

N|=

Figure 2.15: The mapping w = z

is illustrated in Figure 2.15. We leave as an exercise the investigation of what happens when
a=0o0rb=0.

We can easily extend what we’ve done to integer powers greater than 2. We begin by letting
n be a positive integer, considering the function w = f(z) = 2", for z = re® # 0, and then
expressing it in the polar coordinate form

w= f(z) = 2" = r"em?, (2.14)

If we use polar coordinates w = pe’® in the w plane, the mapping defined by Equation (2.14)
can be given by the system of equations

p=r" and ¢ =nb.

The image of the ray r > 0, § = « is the ray p > 0, ¢ = no, and the angles at the origin
are increased by the factor n. The functions cosnf and sinnf are periodic with period 27 /n,
so f is in general an n-to-one function; that is, n points in the z plane are mapped onto each
non-zero point in the w plane.

If we now restrict the domain of w = f(z) = 2™ to the region

E:{rew:r>0 and —E<0§E},

n n
then the image of E under the mapping w = 2™ can be described by the set
F={pe®:p>0 and —7m<¢<n},

which consists of all points in the w plane except the point w = 0. The inverse mapping of f,
which we denote g, is then

sl

2= g(w) = wn = pre’a,

where w € F. That is,

- Arg(w)
2= g(w) = wn = wlme " m,

where w # 0. As with the principal square root function, we make an analogous definition for
nth roots.
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Definition 2.2 (Principal nth Root). The function

1 Z'Arg;(w)

g(w):w;:|w|%€ n for w=#0
1s called the principal nth root function.

We leave as an exercise to show that f and g are inverses of each other that map the set
FE one-to-one and onto the set ' and the set F' one-to-one and onto the set E, respectively.
Figure 2.16 illustrates this relationship.

y v
w=z"
—
E\
I X ~————————————> U
\\\ i‘/
\Nn -~
N 1
N I=wn

Figure 2.16: The mappings w = 2" and z = w

Exercises for section 2.2 (Seclected answers or hints are on page 432.)

2

1. Find the images of the mapping w = 2* in each case, and sketch the mapping.

) The horizontal line {(x,y) : y = 1}.

) The vertical line {(z,y) : x = 2}.

) The rectangle {(z,y) : 0 <2 <2, 0 <y < 1}.

(d) The triangle with vertices 0, 2, and 2 + 2i.

) The infinite strip {(z,y) : 1 < z < 2}.
) The right half-plane region to the right of the hyperbola 22 — y? = 1.
) The first quadrant region between the hyperbolas zy = % and zy = 4.

2. For what values of z does (22)% = z hold if the principal value of the square root is to be
used?

3. Sketch the set of points satisfying the following relations.

(a) Re(z?) > 4.
(b) Im(z?) > 6.

4. Find and illustrate the images of the following sets under the mapping w = 23,

(a) {re® :r>1and 3 <6 <3}
(b) {re?:1<r<9and0<6< 2}
(c) {re? :r<4and —7w<6<3Z}
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10.

11.

12.

(d) The vertical line {(z,y) : x = 4}.
(e) The infinite strip {(z,y) : 2 <y < 6}.

. . 2
(f) The region to the right of the parabola x =4 — ¥z.

Hint: Use the inverse mapping z = w? to show that the answer is the right half-plane
Re(w) > 2.

. Find the image of the right half-plane Re(z) > 1 under the mapping w = 22 + 2z + 1.

Find the image of the following sets under the mapping w = 23.

(a) {re :1<r<2and T <0< Z}.
0 . 2T 3m
(b) {re® :r>3and & < § < 3T}

Find the image of {re? : r > 2 and 7 <0< 5} under the following mappings.

(a) w=23
(b) w = 2*.
(c) w = 25.

. Find the image of the sector r > 0, —7m < 6 < %” under the following mappings.

(a) w= 23
(b) w =23
(c) w =21

. Use your knowledge of the principal square root function to explain the fallacy in the

following logic:

. Arg(w)
Show that the functions f(z) = 2% and g(w) = wz = \w]%ez 2 with domains given by
Equations (2.6) and (2.7), respectively, satisfy Equations (2.3). Thus, f and g are inverses
of each other that map the shaded regions in Figure 2.14 one-to-one and onto each other.

Show what happens when a = 0 and b = 0 in Example 2.13.

Establish the result referred to in Definition 2.2.

2.3 Limits and Continuity

Let u = u(z,y) be a real-valued function of the two real variables = and y. Recall that u has
the limit up as (x,y) approaches (xg,yo) provided the value of u(x,y) can be made to get as
close as we want to the value ug by taking (z,y) to be sufficiently close to (zg,y0). When this
happens we write

lim

w(z,y) = ug.
(z,y)—(z0,y0) (@9) 0

In more technical language, u has the limit uy as (z,y) approaches (xo, yo) iff |u(z,y) — uo|
can be made arbitrarily small by making both |z — xg| and |y — yo| small. This condition is like
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the definition of a limit for functions of one variable. The point (z,y) is in the zy plane, and
the distance between (z,y) and (zoyo) is \/(z — 20)2 + (y — yo)2. With this perspective we can
now give a precise definition of a limit.

Definition 2.3 (Limit of u(x,y)). The expression lim  wu(z,y) = up means that for each
(%Z/)*(xo,yo)
number € > 0, there is a corresponding number & > 0 such that

lu(z,y) —uo| < e whenever 0 <+/(x —x0)2+ (y —y0)2 < 6. (2.15)
Example 2.14. Show, if u(z,y) = (3522%22)7 then (x’yl)ighw) u(z,y) = 0.

Solution:
If £ =rcosf and y = rsinf, then
2r3 cos3 6

= 2rcos® 6.
r2cos2 0 + r2sin? 6

u(z,y) =

Because \/(z — 0)2 + (y — 0)2 = 7 and because | cos® 6| < 1,
|u(z,y) — 0] = 2r| cos®A| <& whenever 0<\/z2+y2=r< g

Hence, for any € > 0, Inequality (2.15) is satisfied for § = §; that is, u(z, y) has the limit ug = 0
as (z,y) approaches (0,0).

The value wuy of the limit must not depend on how (x,y) approaches (xo, o), so u(z,y)
must approach the value ug when (z,y) approaches (zg, y9) along any curve that ends at the
point (xg, yo). Conversely, if we can find two curves C; and Cy that end at (z¢, yo) along which
u(x,y) approaches two distinct values u; and ug, then u(z,y) does not have a limit as (z,y)
approaches (g, yp).

Example 2.15. Show that u(z,y) = xﬁ’yQ does not have a limit as (z,y) approaches (0,0).

Solution:

If we let (z,y) approach (0,0) along the x axis, then

: : (z)(0)
] 0)= 1 ),
(2.0)=(0.0) w=,0) (2.0)2(0,0) 22 + 02

But if we let (z,y) approach (0, 0) along the line y = x, then

lim w(x,z)= lim (@)(z) = 1
(z,2)—(0,0) (z,2)—(0,0) 22 + 22 2
Because the value of the limit differs depending on how (z,y) approaches (0,0), we conclude
that u(x,y) does not have a limit as (z,y) approaches (0,0).

Let f(z) be a complex function of the complex variable z that is defined for all values of z
in some neighborhood of 2y, except perhaps at the point zg. We say that f has the limit wg as
z approaches zg, provided the value f(z) can be made as close as we want to the value wgy by
taking z to be sufficiently close to zg. When this happens we write

lim f(z) = wo.
Z—r20

The distance between the points z and zp can be expressed by |z — 29|, so we can give a
precise definition similar to the one for a function of two variables.
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Definition 2.4 (Limit of f(z)). The expression lim f(z) = wg means that for each real number
Z—20

e > 0, there exists a real number § > 0 such that
|f(2) —wo| <& whenever 0 < |z—zp| <.
Using the notation of (1.50) and (1.52), we can express the last relationship as

f(2) € Do(wo) whenever z € Dj(2p).

The formulation of limits in terms of open disks provides a good context for looking at this
definition. It says that for each disk of radius € about the point wq (represented by D.(wyp))
there is a punctured disk of radius ¢ about the point zy (represented by D3 (z9)) such that the
image of each point in the punctured § disk lies in the € disk. The image of the § disk does
not have to fill up the entire ¢ disk; but if z approaches zy along a curve that ends at 2y, then
w = f(z) approaches wy. The situation is illustrated in Figure 2.17.

y v

&
\s o
w=
z —Z> Wy

0

Figure 2.17: As z — 2¢ the function values f(z) — wo

Example 2.16. Show that if f(z) =z, then H_)m f(2) =z, where zy is any complex number.
2—20

Solution:

As f merely reflects points about the y axis, we suspect that any ¢ disk about the point Zg would
contain the image of the punctured ¢ disk about 2 if § = . To confirm this conjecture, we let
e be any positive number and set 6 = . Then we suppose that z € D3(z9) = D}(2), which
means that 0 < |z — 29| < e. The modulus of a conjugate is the same as the modulus of the
number itself, so the last inequality implies that 0 < |z — zg| < . This inequality is the same as
0 < |z —7Zg| < e. Since f(z) =z and wy = Zp, this last inequality becomes 0 < |f(z) — wp| < ¢,
or f(z) € D.(%Zp), which is what we needed to show.

If we consider w = f(z) as a mapping from the z plane into the w plane and think about
the previous geometric interpretation of a limit, then we are led to conclude that the limit of a
function f should be determined by the limits of its real and imaginary parts, v and v. This
conclusion also gives us a tool for computing limits.

Theorem 2.1. Let f(z) = u(z,y) + iv(z,y) be a complex function that is defined in some
neighborhood of zg, except perhaps at zg = xo + iyo. Then

lim f(z) = wo = up + vy (2.16)
Z—r20
uf
lim  wu(z,y) =uy and lim  v(z,y) = vo. (2.17)
(@,y)—(z0,y0) (2,y)=(z0,90)
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Proof. We first assume that Statement (2.16) is true and show that Statement (2.17) is true.
According to the definition of limit, for each € > 0, there is a corresponding § > 0 such that

f(2) € De(wy) whenever =z € Dj(zp);
that is,
|f(2) —wp| <& whenever 0 < |z— zy| <.

Because f(z) —wo = u(z,y) — uo + i(v(x,y) — vo), we can use Inequalities (1.21) to conclude
that

lu(z,y) —uo| < [f(z) —wo| and |o(z,y) —vo| <|f(2) —wol.
It now follows that |u(z,y) — ug| < € and |v(z,y) — vo| < € whenever 0 < |z — 29| < J, and so
Statement (2.17) is true.

Conversely, assume that Statement (2.17) is true. Then for each € > 0, there exists §; > 0
and d2 > 0 so that

lu(z,y) — ug| < whenever 0 < |z — 29| <61, and

lv(x,y) —vo| < whenever 0 < |z — zp| < 2.

[CERON RG]

We choose é to be the minimum of the two values d; and d2. Then we can use the triangle
inequality

| f(2) —wol < |u(z,y) — uol + [v(z,y) — vo
to conclude that

e €
\f(z)—w0]<§+§:5 whenever 0 < |z — 29| < 6;

that is,
f(2) € De(wo) whenever =z € Dj(zp).

Hence the truth of Statement (2.17) implies the truth of Statement (2.16), and the proof of the

theorem is complete. ]

Example 2.17. Show that lim (2% —2z+4+1) = —1.

z— 141
Solution:

Let
f(2) =22 =224 1 =2 —y* — 20 +1+i(2zy — 2y).

Computing the limits for v and v, we obtain

lim w(x,y)=1-1-2+1=-1 and

(z,y)—(1,1)
lim ov(z,y)=2-2=0,
(z,y)—(1,1) (=9)
so our previous theorem implies that lim f(z) = —1.

z—1+1

Limits of complex functions are formally the same as those of real functions, and the sum,
difference, product, and quotient of functions have limits given by the sum, difference, product,
and quotient of the respective limits. We state this result as a theorem and leave the proof as
an exercise.
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Theorem 2.2. Suppose that le f(2) = A and lim g(z) = B. Then
z—20

lim [() £ 9(:)] = A% B, (2.18)
Zli)n,; f(2)g(z) = AB, and (2.19)
Zli_)rrzlo g(g = g, where B # 0. (2.20)

Definition 2.5 (Continuity of u(x,y)). Let u(z,y) be a real-valued function of the two real
variables x and y. We say that u is continuous at the point (xo, yo) if three conditions are
satisfied:

lim  w(z,y) exists, (2.21)
(z,y)—=(z0,90)
u(zo, yo) exists, and (2.22)

(#,y)=(20,0)

Condition (2.23) actually implies Conditions (2.21) and (2.22) because the existence of
the quantity on each side of Equation (2.23) is implicitly understood to exist. For example, if
3

u(z,y) = 'z when (z,y) # (0, 0) and if u(0, 0) = 0, then u(z,y) — (0, 0) so that Conditions
(2.21), (2.22), and (2.23) are satisfied. Hence u(z,y) is continuous at (0, 0).

There is a similar definition for complex valued functions.

Definition 2.6 (Continuity of f(z)). Let f(z) be a complex function of the complex variable
z that is defined for all values of z in some neighborhood of zg. We say that f is continuous at
zo if three conditions are satisfied:

le)n;l f(2) exists, (2.24)
f(z0) exists, and (2.25)
lim f(z) = £(z0). (2.26)

Remark 2.3. Ezample 2.16 shows that the function f(z) = Z is continuous.

A complex function f is continuous iff its real and imaginary parts, v and v, are continuous.
The proof of this fact is an immediate consequence of Theorem 2.1. Continuity of complex
functions is formally the same as that of real functions, and sums, differences, and products of
continuous functions are continuous; their quotient is continuous at points where the denomi-
nator is not zero. These results are summarized by the following theorems. We leave the proofs
as exercises.

Theorem 2.3. Let f(z) = u(z,y) + iv(x,y) be defined in some neighborhood of zy. Then f is
continuous at zo = xo + iyo iff u and v are continuous at (g, Yo).

Theorem 2.4. Suppose that f and g are continuous at the point zg. Then the following
functions are continuous at zq:

e The sum f + g, where (f + g)(2) = f(z) + g(2);
e The difference f — g, where (f — g)(z) = f(2) — g(2);
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e The product fg, where (fg)(z) = f(2)g(z);

e The quotient L g where g(z) =

g(g, provided g(z9) # 0; and

e The composition f o g, where (fog)(z) = f(g(z)), provided f is continuous in a neigh-
borhood of g(zp).
Example 2.18. Show that the polynomial function given by
w= P(2) = ap+ a1z +agz® + -+ ap2"

is continuous at each point zg in the complex plane.

Solution:

If ag is the constant function, then lim ag = ag; and if a; # 0, then we can use Definition 2.4
Z—>Zo

with f(z) = a1z and the choice § = | 17 to prove that lim (a1z) = a1zp. Using Property (2.19)
zZ—20
and mathematical induction, we obtain
lim (ap2%) = apzf for k=0,1,2,...,n. (2.27)

Z—20

We can extend Property (2.18) to a finite sum of terms and use the result of Equation (2.27)

to get
n
— k _
ZlgrleP z) = Zlgrzlo (Z arz ) = kz_oakzo = P(z
Conditions (2.24), (2.25), and (2.26) are satisfied, so we conclude that P is continuous at zp.

One technique for computing limits is to apply Theorem 2.4 to quotients. If we let P and
Q@ be polynomials and if Q(zp) # 0, then

1 P _ Pla)
S50 Q() Q)

Another technique involves factoring polynomials. If both P(zy) = 0 and Q(zp) = 0, then
P and @ can be factored as P(z) = (z — z9)P1(z) and Q(z) = (2 — 20)Q1(2). If Q1(z0) # 0,

then the limit is P(2) ( )Pi(2) Pi(2)
) z) L. z—z0)1(z)  Ii(%o
A G = A 0 0i2) ~ Giz)

Example 2.19. Show that lim 2{% =1-—q.
z2— 141 z+2

Solution:
Here P and @ can be factored: P(z) = (2 —1—4)(z+1+1); Q(z)=(2—1—14)(z —1+1).
Thus, the limit can be obtained in a straightforward manner:

lim ( 222 ) B T e GRS T <z+1+i) _ ()4 249

. 2 = ‘ . . — £T — 1.
21t \#2—22+2 21t (F—1=1)(z—141) it \F— 1+ (14+2)—1+2 21

65



Exercises for Section 2.3 (Selected answers or hints are on page 433.)

1. Find the following limits.

(a) lim (22 — 4z + 2+ 5i).

2—2+1

i Zot4zt2
(b) lim =552,

zi—1

2242—1-3i

37515 by factoring.

2. Determine where the following functions are continuous.

(a) 22 =922 +iz—2.
(b) F5r-

(o) =525

(@) s

() ZHL.

(f) .

3. State why lim (e cosy + ix?y) = e cos yo + iz2yo.
Z—rZ20

4. State why lim [In(z? + y?) + iy] = In(23 + y3) + iyo, provided |z| # 0.

b
5. Show that
(@) lim - =0
) limg =0

6. Let f(2) = %‘(2) when z # 0 and let f(0) = 0. Show that f(z) is continuous for all
values of z.

2 2 .
7. Let f(z) = 25 = %:yzzm

Find lim f(z) as z — 0 along the line y = z.

Find liH(l) f(2) as z — 0 along the line y = 2.

Find lim f(2) as z — 0 along the parabola y = .

8. Let f(z) = f(z,y) = x;f;yﬁ + i5xﬁiyy2 when z # 0, and let f(0) = 0.

(a) Show that 1ir% f(z) = f(0) = 0 if z approaches zero along any straight line that
zZ—r
passes through the origin.

(b) Show that f is not continuous at the point 0.
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10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. For z #0, let f(z) = 2. Does f(z) have a limit as z — 07

Does lim Argz exist? Why?

z——4
Hint: Use polar coordinates and let z approach —4 from the upper and lower half-planes.
Let f(z) = 23 = r%(cosg + isin%), where z = re, r > 0, and —7 < § < 7. Use the
polar form of z and show that
(a) f(z) =i as z — —1 along the upper semicircle r =1, 0 < 6 < 7.

(b) f(z) — —i as z — —1 along the lower semicircle r =1, —w < 6§ < 0.

Let f(z) = xj;ng when z # 0 and let f(0) = 1. Show that f(z) is not continuous at
20 = 0.

Let f(z) = xe¥ +iy?e~®. Show that f(z) is continuous for all values of 2.

Use the definition of the limit to show that lim 22 = —7 + 244.

z—3+4
Let f(z) = RFT(‘Z) when z # 0 and let f(0) = 1. Is f(z) continuous at the origin?
(e2)°
Let f(z) = T(ZZ') when z # 0 and let f(0) =0. Is f(z) continuous at the origin?

. Arg(z) . . . .
Let f(z) = 22 = |z|%eZ 5, where z # 0. Show that f(2) is discontinuous at each point
along the negative x axis.

Let f(z) = In|z| + iArg(z), where —m < Arg(z) < m. Show that f(z) is discontinuous at
zo = 0 and at each point along the negative x axis.

Let |g(z)] < M and lim f(z) = 0. Show that lim f(2)g(z) = 0. Note: Theorem 2.2 is
Z2—20 Z—20

of no use here because you don’t know whether ILm g(z) exists. Give an ¢, § argument.
z—20

Let Az = z — zp. Show that lim f(z) = wq iff Alimo f(z0 + Az) = wp.
z—

Z—r20

Let f(z) be continuous for all values of z.

(a) Show that g(z) = f(Z) is continuous for all z.
(b) Show that g(z) = f(z) is continuous for all z.

Verify the following identities:

(a) li_)m [f(z) £ 9(2)] = A+ B: Identity (2.18).
z2—20

(b) ILm f(2)g(z) = AB: Identity (2.19).
Z—%20

(c) Zli_}n;g 58 = %: Identity (2.20).

Verify the results of Theorem 2.4.

Show that the principal branch of the argument, Arg z, is discontinuous at 0 and all points
along the negative real axis.
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2.4 Branches of Functions

In Section 2.2 we defined the principal square root function and investigated some of its prop-
erties. We left unanswered some questions concerning the choices of square roots. We now look
at these questions because they are similar to situations involving other elementary functions.

In our definition of a function in Section 2.1, we specified that each value of the independent
variable in the domain is mapped onto one and only one value in the range. As a result, we often
talk about a single-valued function, which emphasizes the “only one” part of the definition and
allows us to distinguish such functions from multiple-valued functions, which we now introduce.

Let w = f(z) denote a function whose domain is the set D and whose range is the set R.
If w is a value in the range, then there is an associated inverse relation z = g(w) that assigns
to each value w the value (or values) of z in D for which the equation f(z) = w holds. But
unless f takes on the value w at most once in D , then the inverse relation g is necessarily many
valued, and we say that ¢ is a multivalued function. For example, the inverse of the function
w = f(z) = 22 is the square root function z = g(w) = w2. For each value z other than z = 0,
then, the two points z and —z are mapped onto the same point w = f(z); hence g is, in general,
a two-valued function.

The study of limits, continuity, and derivatives loses all meaning if an arbitrary or ambiguous
assignment of function values is made. For this reason we did not allow multivalued functions
to be considered when we defined these concepts. When working with inverse functions, you
have to specify carefully one of the many possible inverse values when constructing an inverse
function, as when you determine implicit functions in calculus. If the values of a function f
are determined by an equation that they satisfy rather than by an explicit formula, then we
say that the function is defined implicitly or that f is an implicit function. In the theory of
complex variables we present a similar concept.

We now let w = f(z) be a multiple-valued function. A branch of f is any single-valued
function fp that is continuous in some domain (except, perhaps, on the boundary). At each
point z in the domain, it assigns one of the values of f(z).

N |=

Example 2.20. We consider some branches of the two-valued square root function f(z) = z
(z # 0). Define the principal square root function as

0 1 0

i3 — 3 cos 3 + 472 sin 3 (2.28)

where r = |z| and 6 = Arg(z) so that —m < § < m. The function f; is a branch of f. Using the
same notation, we can find other branches of the square root function. For example, if we let

fa2) = 2|2 5T = phei
0+2 0+ 2
=72 cos Rl +ir? sin +en , (2.29)
2 2
then 1 0+2 1 0 1 %)
f2(z) = 7567‘ 2 = r?ezielﬂ = —rieZE = —fl(z)’

so f1 and fo can be thought of as “plus” and “minus” square root functions. The negative real
axis is called a branch cut for the functions f; and fo. Each point on the branch cut is a point
of discontinuity for both functions f; and fs.

Example 2.21. Show that the function f; is discontinuous along the negative real axis.
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Solution:

Let zg = rpe'™ denote a negative real number. We compute the limit as z approaches zy
through the upper half-plane {z : Im(z) > 0} and the limit as z approaches zy through the
lower half-plane {z : Im(z) < 0}. In polar coordinates these limits are given by

, 1
lim  fi(re?) = lim re <cos 4 + isin 9) =ir;, and
(r,0)—(ro,m) (r,0)—(ro,m) 2 2
lim fi(re?) = lim ra <C089 + ¢sin 9) = —ir%
(r,0)—(ro,—m) ! (r,0)—(ro,—m) 2 2 0

The two limits are distinct, so the function f; is discontinuous at zg.

Remark 2.4. Likewise, fo is discontinuous at zg. The mappings w = fi1(z), w = fa(z), and
the branch cut are illustrated in Figure 2.18.

y v
w=f(z) i }
1
~———————————————————— X 1 u
|
—
z=w? —tlb
|
|
Y
y v
A
|
w=£2) pi
-1 |
-~ X u
—— i
Z=w

Figure 2.18: The branches f; and fs of f(z) 23

We can construct other branches of the square root function by specifying that an argument of
z given by 6 = arg z is to lie in the interval o < 6 < a4 2xw. The corresponding branch is

6 0 ,
fa(z) = rZ cos 3 +ir? sin 3 where z=re? £0 and o <6 <a+ 27 (2.30)

The branch cut for f, is the ray » > 0, 8 = «, which includes the origin. The point z = 0,
common to all branch cuts for the multivalued square root function, is called a branch point.
The mapping w = f,(z) and its branch cut are illustrated in Figure 2.19.

2.4.1 The Riemann Surface for w = 23

A Riemann surface is a construct useful for visualizing a multivalued function. It was introduced
by G. F. B. Riemann (1826-1866) in 1851. The idea is ingenious—a geometric construction
that permits surfaces to be the domain or range of a multivalued function. Riemann surfaces
depend on the function being investigated. We now give a nontechnical formulation of the
Riemann surface for the multivalued square root function.

Consider w = f(z) = z%, which has two values for any z # 0. Each function f; and f2 in
Figure 2.18 is single-valued on the domain formed by cutting the z plane along the negative
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o2

Figure 2.19: The branch f, of f(z) = 23

x axis. Let Dy and Do be the domains of f; and fs, respectively. The range set for f; is the
set Hp consisting of the right half-plane, and the positive v axis; the range set for fs is the set
H, consisting of the left half-plane and the negative v axis. The sets Hy and Hy are “glued
together” along the positive v axis and the negative v axis to form the w plane with the origin
deleted.

We stack Dy directly above Dy. The edge of Dy in the upper half-plane is joined to the edge
of Dy in the lower half-plane, and the edge of D; in the lower half-plane is joined to the edge of
Dy in the upper half-plane. When these domains are glued together in this manner, they form
R, which is a Riemann surface domain for the mapping w = f(z) = 2. The portions of Dy,
Dy, and R that lie in {2 : |z| < 1} are shown in Figure 2.20.

Formation of the Riemann surface for w = 22 (a) a portion of D; and its image under
w = z%; (b) a portion of Dy and its image under w = z%; (c) a portion of R and its image
under w = 23.

The beauty of this structure is that it makes this “full square root function” continuous
for all z # 0. Normally, the principal square root function would be discontinuous along the
negative real axis, as points near —1 but above that axis would get mapped to points close
to ¢, and points near —1 but below the axis would get mapped to points close to —i. As
Figure 2.20(c) indicates, however, between the point A and the point B, the domain switches
from the edge of D; in the upper half-plane to the edge of Dy in the lower half-plane. The
corresponding mapped points A’ and B’ are exactly where they should be. The surface works
in such a way that going directly between the edges of Dy in the upper and lower half-planes
is impossible (likewise for Ds). Going counter-clockwise, the only way to get from the point A
to the point C, for example, is to follow the path indicated by the arrows in Figure 2.20(c).
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(b) A portion of Dy and its image under w = f,.

2
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(¢) A portion of R and its image under w = z2.

Figure 2.20: Formation of the Riemann surface for w = 23 (a) a portion of D; and its image
under w = 22; (b) a portion of Dy and its image under w = z%; (c) a portion of R and its
image under w = 23

Exercises for Section 2.4 (Selected answers or hints are on page 434.)

1. Let fi(z) and fa(z) be the two branches of the square root function given by Equations
(2.28) and (2.29), respectively. Use the polar coordinate formulas in Section 2.2 to find
the image of

(a) quadrant II, z < 0 and y > 0, under the mapping w = fi(z).
(b) quadrant II, x < 0 and y > 0, under the mapping w = fa(z).
(c) the right half-plane Re(z) > 0 under the mapping w = fi(z).
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(d) the right half-plane Re(z) > 0 under the mapping w = fa(z).
2. Let o = 0 in Equation (2.30). Find the range of the function w = f,(2).
3. Let a = 27 in Equation (2.30). Find the range of the function w = f,(2).

4. Find a branch of the square root that is continuous along the negative x axis.

- Arg(z)

5. Let fi(z) = |z|%eZ 5 =13 cosg +irs sing, where |z| = r # 0, and 6 = Arg(z). f1
denotes the principal cube root function.

W=

(a) Show that f; is a branch of the multivalued cube root f(z) = z3.
(b) What is the range of f17

(¢c) Where is f; continuous?

6. Let fa(z) = r3 cos(ﬁ%) +irs sin(ﬁ%), where r > 0 and —7 < 0 <.

(
(

ol

a) Show that fo is a branch of the multivalued cube root f(z) = 23.
b) What is the range of fo?

(c) Where is fy continuous?

(d) What is the branch point associated with f?

7. Find a branch of the multivalued cube root function that is different from those in Exer-
cises 5 and 6. State the domain and range of the branch you find.

8. Let f(z) = 2w denote the multivalued nth root, where n is a positive integer.

(a) Show that f is, in general, an n-valued function.
(b) Write the principal nth root function.

(¢) Produce a different branch of the multivalued nth root function.

9. Describe a Riemann surface for the domain of definition of

10. Discuss how Riemann surfaces should be used 2for both the domain and range to help
describe the multivalued function w = f(z) = z5.

2.5 The Reciprocal Transformation w =1

z

The mapping w = f(z) = % is called the reciprocal transformation. It maps the z plane one-to-

one and onto the w plane except for the point z = 0, which has no image. The point w = 0 has
no preimage or inverse image. Using exponential notation w = pe'®, if z = re? # 0, we have

w=pe'? === ¢ (2.31)

The geometric description of the reciprocal transformation is now evident. It is an inversion
(that is, the modulus of % is the reciprocal of the modulus of z) followed by a reflection through
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Figure 2.21: The reciprocal transformation w = %

the z axis. The ray r > 0, § = «, is mapped one-to-one and onto the ray p > 0, ¢ = —a. Points
that lie inside the unit circle C1(0) = {z : |z| = 1} are mapped onto points that lie outside the
unit circle and vice versa, as Figure 2.21 illustrates.

We can extend the system of complex numbers by joining to it an “ideal” point denoted by
oo and called the point at infinity. This new set is called the extended complex plane. You will
see shortly that the point co has the property, loosely speaking, that z — oo iff |2| — oc.

An e-neighborhood of the point at infinity is the set {z : |z > 1}. The usual way to
visualize the point at infinity is by using what we call the stereographic projection, which is
attributed to Riemann. Let € be a sphere of diameter 1 that is centered at the point (0, 0, %) in
three-dimensional space where coordinates are specified by the triple of real numbers (x,y, &).
Here the complex number z = x + iy is associated with the point z = (x,y,0).

The point N = (0,0,1) on § is called the north pole of Q. If we let z be a complex
number and consider the line segment L in three-dimensional space that joins z to the north
pole N = (0,0, 1), then L intersects € in exactly one point L. The correspondence z «— Z is
called the stereographic projection of the complex z plane onto the Riemann sphere €. A point
z = &+ iy of unit modulus will correspond with Z = (§, §, %) If z has modulus greater than 1,
then L will lie in the upper hemisphere where for points Z = (z,y,£) we have £ > % If z has
modulus less than 1, then L will lie in the lower hemisphere where for points Z = (z,y, £) we
have ¢ < % The complex number z = 0 = 0+ 0¢ corresponds with the south pole, S = (0,0,0).
Now you can see that indeed z — oo iff |z|] — oo iff L — N. Hence N corresponds with the
“ideal” point at infinity. The situation is shown in Figure 2.22.

N

Figure 2.22: The Riemann sphere

Let’s reconsider the mapping w = % by assigning the images w = co and w = 0 to the

73



points z = 0 and z = oo, respectively. We now write the reciprocal transformation as

é when z#0 and 2z # oo
w=f(z) =40 when 2= oc; (2.32)

oo when z=0.

Note that the transformation w = f(z) is a one-to-one mapping of the extended complex
z plane onto the extended complex w plane. Further, f is a continuous mapping from the
extended z plane onto the extended w plane. We leave the details to you.

Example 2.22. Show that the image of the half-plane A = {z : Re(z) > 1} under the mapping
w = 1 is the closed disk D1(1) = {w : Jw— 1| < 1}.

Solution:

Proceeding as we did in Example 2.6, we get the inverse mapping of u + iv = w = f(z) = % as
z=f"Yw)=21. Then

utiv=we€B<+= fHw)=z=x+iyc A

1 .
<= —=z+iye A
U+
i . -v ) A
(:>u2+v2+lu2+v2_$+ly€
— U > 1
_— =2 —
u? + v? -2
U 1
= > = 2.33
w2 +02 2 ( )
—u—2u+1+02<1 (2.34)
= (u—12+(v-0)*<1,

which describes the disk D1(0). As the reciprocal transformation is one-to-one, preimages of

the points in the disk D1(0) will lie in the right half-plane Re(z) > 3. Figure 2.23 illustrates
this result.

y v

|
—_
=
—_
({5
|
()
|
—_
—_
S

—i —i F

4 Y

1
z

Figure 2.23: The image of Re(z) > 3 under the mapping w =

Remark 2.5. Alas, there is a fly in the ointment here. As our notation indicates, Equations
(2.33) and (2.34) are not equivalent. The former implies the latter, but not conversely. That
is, Equation (2.34) makes sense when (u, v) = (0, 0), whereas Equation (2.33) does not. Yet
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Figure 2.23 seems to indicate that f maps Re(z) > 5 onto the entire disk D1(0), including the
point (0, 0). Actually, it does not, because (0, 0) has no preimage in the complex plane. The
way out of this dilemma is to use the complex point at infinity. It is that quantity that gets
mapped to the point (u, v) = (0, 0), for as we have already indicated in Equation (2.32), the
preimage of 0 under the mapping % 1s 1ndeed 0.

Example 2.23. For the transformation %, find the image of the portion of the half plane
Re(z) > 1 that is inside the closed disk D1(3) = {2 : |z — 3| < 1}.
Solution:

Using the result of Example 2.22, we need only find the image of the disk 51(%) and intersect
it with the closed disk Dj(1). To begin, we note that

D (;) :{(x,y):xQ—i—yQ—xéz}.

L “we have, as before,

267

_ /1 — /(1
ut+iv=wef <D1 <2>> — f(w) e Dy <2>
1 — /1
<:>€D1<)
w 2
P S N
u? + v?2 lu2+1)2 19

2 2
PRI L + v _L<§
u? + v? u? + v? w2 4+v2 4

1 U <3
w2402 w402 T4

= +22+2>42
u-+ = v -
3 —\3/ 7

which is an inequality that determines the set of points in the w plane that lie on and outside
the circle Ca(—2) = {w : [w+ 2| = 3}. Note that we do not have to deal with the point at
3

infinity this time, as the last inequality is not satisfied when (u,v) = (0,0).

Because z = f~1(w)

When we intersect this set with D1 (1), we get the crescent-shaped region shown in Figure 2.24.

Figure 2.24: The mapping w = % discussed in Example 2.23
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To study images of “generalized circles,” we consider the equation
Al +y*)+ Bz +Cy+D =0

where A, B, C, and D are real numbers. This equation represents either a circle or a line,
depending on whether A # 0 or A = 0, respectively. Transforming the equation to polar
coordinates gives

Ar? +1r(Bcos + Csinf) + D = 0.

Using the polar coordinate form of the reciprocal transformation given in Equation (2.31),
we can express the image of the curve in the preceding equation as

A+ p(Bcosp — Csing) + Dp? =0,

which represents either a circle or a line, depending on whether D # 0 or D = 0, respectively.
Thus, the reciprocal transformation w = % carries the class of lines and circles onto itself.

Example 2.24. Find the images of the vertical lines x = a and the horizontal lines y = b
under the mapping w = %

Solution:

Considering the point at infinity, the image of the line x = 0 is the line w = 0; that is, the
y-axis is mapped onto the v-axis. Similarly, the xz-axis is mapped onto the w-axis. The inverse

1

mapping is z = ; = 207 + iz, 80 if a # 0, the vertical line = a is mapped onto the set

of (u,v) points satisfying .>—> = a. For (u,v) # (0,0), this outcome is equivalent to

SR B B 12+2 1)?
U — —u+ — =|(u—— == .
a 402 " 2a v 2a

which is the equation of a circle in the w plane with center wy = % and radius |ﬁ| The point
at infinity is mapped to (u,v) = (0,0). Similarly, y = b is mapped onto the circle

I IR +i2—i2
TR T T T ") T\

which has center wg = —g; and radius |g;|. Figure 2.25 illustrates the images of several lines.
- e
| | —la — Vv
Il Il ] Il \
S S S b=-1
b=1 w= 1
z he_
—_
b=1
a=-1 a=1
< > X < > 1l
b=-1
a=-1 b=1 a=1
b=~
b=}
/

Figure 2.25: The images of horizontal and vertical lines under the reciprocal transformation
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Exercises for Section 2.5 (Selected answers or hints are on page 434.)

For Exercises 1-8, find the image of the given circle or line under the reciprocal transformation

w =

10.

11.

12.

13.

14.

15.

16.

17.

18.

. The horizontal line Im(z) =

1

z°

1
£

. The circle C%(—%) ={z:|z+ %=1}
. The vertical line Re(z) = —3.

. The circle C1(—2) ={z: |z +2| = 1}.
. The line 2z + 2y = 1.

. The circle C1(4) = {z: |z — 4| = 1}.

i
The circle C1(3) = {z: |z — 3| = 1}.

. The circle Co(—1+1i) ={z: |z +1—i| = 2}.

Limits involving co. The function f(z) is said to have the limit L as z approaches co, and
we write lim f(z) = L iff for every € > 0 there exists an R > 0 such that f(z) € D.(L)

Z—00
(i.e., | f(2) — L| < €) whenever |z| > R. Likewise, li_)m f(2) = oo iff for every R > 0 there
2—20
exists 0 > 0 such that |f(2)| > R whenever z € Dj(zg) (i.e., 0 < |z — 29| < §). Use this
definition to
(a) show that lim 1 =0.

Z—00
(b) show that lim 1 = oo.

2—0 *
Show that the reciprocal transformation w = % maps the vertical strip 0 < x < % onto the
region in the right half-plane Re(w) > 0 that is outside the disk D;(1) = {w : lw—1| < 1}.
Find the image of the disk D4 (-2) ={z:]z+%| < 3} under f(z) = 1.
Show that the reciprocal transformation maps the disk |z — 1| < 2 onto the region that
lies exterior to the circle {w : |w + §| = 2}.

1
o

Find the image of the half-plane y > % — x under the mapping w =

Show that the half-plane y < x — % is mapped onto the disk |w — 1 — i| < v/2 by the
reciprocal transformation.

1
>

Find the image of the quadrant > 1, y > 1 under the mapping w =

Show that the transformation w = % maps the disk |z —i| < 1 onto the lower half-plane
Im(w) < —1.

Show that the transformation w = 222 = —1 + 2 maps the disk |z — 1| < 1 onto the right
half-plane Re(w) > 0.

Show that the parabola 2oz = 1 — y? is mapped onto the cardioid p = 1 4 cos¢ by the
reciprocal transformation.
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19. Use the definition in Exercise 9 to prove that lim ‘z—ﬂ =1.
Z—00

20. Show that z = x + iy, when mapped onto the Riemann sphere, has coordinates

x y % 492
2242+ 2242+ 2242+ 1)

21. Explain how the quantities +00, —o0, and oo differ. How are they similar?

78



Chapter 3

Analytic and Harmonic Functions

Overview

Does the notion of a derivative of a complex function make sense? If so, how should it be
defined and what does it represent? These and similar questions are the focus of this chapter.
As you might guess, complex derivatives have a meaningful definition, and many of the standard
derivative theorems from calculus (such as the product rule and chain rule) carry over. There
are also some interesting applications. But not everything is symmetric. You will learn in this
chapter that the mean value theorem for derivatives does not extend to complex functions. In
later chapters you will see that differentiable complex functions are, in some sense, much more
“differentiable” than differentiable real functions.

3.1 Differentiable and Analytic Functions

Using our imagination, we take our lead from elementary calculus and define the derivative of
f at 2o, written f'(zp), by
F'(z0) = lim M’ (3.1)

Z—20 zZ — 20

provided the limit exists. If it does, we say that the function f is differentiable at zy. If we
write Az = z — zp, then we can express Equation (3.1) in the form

P R C R C))

Az—0 Az (32)

Letting w = f(z) and Aw = f(z) — f(20) and using the Leibniz notation 22 for the derivatives
gives

_dw gy, A
dz Az—0 Az

f'(20) (3.3)

Example 3.1. If f(z) = 23, show that f’(z) = 322
Solution:

Using Equation (3.1), we have
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3_ .3
f'(z) = lim =—0

Z—=20 Z — 20
(z — zo)(z2 + 202 + 2(2))

= lim
Z—20 Z— 20
= lim (22 + 202 + 23)
Z—r20
= 323.

We can drop the subscript on 2y to obtain f/(z) = 322 as a general formula.

Pay careful attention to the value Az in Equation (3.3); the limit must be independent
of the manner in which Az — 0. If we can find two curves that end at zy along which %ﬁ’
approaches distinct values, then % does not have a limit as Az — 0, so f does not have a
derivative at zg. The same observation applies to the limits in Equations (3.1) and (3.2).

Example 3.2. Show that the function w = f(z) = Z = x — iy is nowhere differentiable.

Solution:
We choose two approaches to the point zyp = zg + iyp and compute limits of the difference

quotients. First, we approach zy = xg + iyg along a line parallel to the z-axis by forcing z to
be of the form z = x + iyy.

. f(z) = f(z0) ! f(z +iyo) — f(xo + iyo)
m ————— = 11m " B
20 2 — 2 (a+iyo)—(zo+iyo) (T + iyo) — (w0 + iyo)
(z —iyo) — (w0 — iyo)
11m B
(z+iyo)—(zo+iyo) (T — Zo) +i(¥o — o)
T — X0

= lim
(z+iyo)—(zo+iyo) T — Lo

=1.

Next, we approach 2y along a line parallel to the y axis by forcing z to be of the form z = zg+1y.

lim f(z) = fz0) _ f(zo +iy) — f(xo + iyo)

lim - -
z=z0 2 — 2 (wo+iy)—(zotiye) (To +1y) — (o + iyo)
_ lim (o — iy) — (%0 — i)
(zo+iy)—(zo+iyo) (o — x0) +i(y — o)
(zo+iy)—(zo+iyo) (Y — Yo)

=—1.

The limits along the two paths are different, so there is no possible value for the right side
of Equation (3.1). Therefore f(z) = Z is not differentiable at the point zg, and since zo was
arbitrary, f(z) is nowhere differentiable.

Remark 3.1. In Section 2.3 we showed that f(z) = Z is continuous for all z. Thus, we have
a simple example of a function that is continuous everywhere but differentiable nowhere. Such
functions are hard to construct in real variables. In some sense, the complex case has made
pathological constructions simpler!
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We seldom are interested in studying functions that aren’t differentiable, or are differentiable
at only a single point. Complex functions that have a derivative at all points in a neighborhood
of zy deserve further study. Indeed, functions that are differentiable in neighborhoods of points
are pillars of the complex analysis edifice. We give them a special name, as indicated in the
following definition.

Definition 3.1 (Analytic). The complex function f is analytic at the point zy provided there
is some € > 0 such that f'(z) exists for all z € D.(zp). In other words, f must be differentiable
not only at zg, but also at all points in some e-neighborhood of zg.

If f is analytic at each point in the region R, then we say that f is analytic on R. Again,
we have a special term if f is analytic on the whole complex plane.

Definition 3.2 (Entire). If f is analytic on the whole complex plane then f is said to be entire.

Points of non analyticity for a function are called singular points. They are important for
certain applications in physics and engineering.

Our definition of the derivative for complex functions is formally the same as for real func-
tions and is the natural extension from real variables to complex variables. The basic differ-
entiation formulas are identical to those for real functions, and we obtain the same rules for
differentiating powers, sums, products, quotients, and compositions of functions. We can easily
establish the proof of the differentiation formulas by using the limit theorems.

Suppose that f and g are differentiable. From Equation (3.1) and the technique exhibited in
the solution to Example 3.1, we can establish the following rules, which are virtually identical
to those for real-valued functions.

d

%C =0, where C is a constant, and (3.4)
%z" =nz""', where n is a positive integer. (3.5)
d /
ZleiE=cr'() (3.6)
1) + 9] = £1(2) + /() (37
d
@9 = f(2)9'(z) + 9(2)f(2) (3.8)
d f(z) _9(x)f'(z) = f(2)g'(z) .
dz 9(2) Bk A o
d
- f9(2) = 1'(9(2)9'(2). (3.10)
Important particular cases of Equations (3.9) and (3.10), respectively, are
d _
@zin = szl’ for z#0, n a positive integer, and (3.11)
diz[f(z)]” =n[f(2)]""'f'(z), n a positive integer. (3.12)

Example 3.3. If we use Equation (3.12) with f(2) = 22 +42z + 3 and f'(z) = 2z + 2i, then
we get

d
%(z"' +i22 4+ 3)1 = 8(2% +i22 4+ 3)3(2 +9).
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The proofs of the rules given in Equations (3.4) through (3.10) depend on the validity of
extending theorems for real functions to their complex companions. Equation (3.8), for example,
relies on Theorem 3.1.

Theorem 3.1. If f is differentiable at zy, then f is continuous at zg.

Proof. From Equation (3.1), we obtain
o () = F(z)

Z—20 Z— 20

= ['(=0).
Using the multiplicative property of limits given by Formula (2.19), we get
f(z) = f(20)

Jim [f(2) = f(z0)] = lim ——— - (z — 20)
— lim f(2) = f(z0) lim (z — 20)
zZ—20 zZ— 20 Z—r20
= /(ZU) -0=0
This result implies that li_)m f(2) = f(z0), which is equivalent to showing that f is continuous
Z—20
at zg. ]

We can establish Equation (3.8) from Theorem 3.1. Letting h(z) = f(2)g(z) and using
Definition 3.1, we write

h'(zo) = lim M — lim f(z)g(z) - f(ZO)g(ZO)‘

Z—r20 zZ— 20 Z—20 zZ— 20

If we subtract and add the term f(29)g(z) in the numerator, we get

f(2)g(2) = f(20)9(2) + f(20)9(2) — f(20)g(20)

h/(zo) = ZILIQO e
_ i 18)90) = fl0)g(2) | f(20)9(2) = F(20)9(20)
Py Z— 20 2=r20 2= 20
z—20 Z— 29 z—20 zZ—20 Z— 2

Using the definition of the derivative given by Equation (3.1) and the continuity of g, we obtain
h'(z0) = f'(20)9(20) + f(20)9'(20), which is what we wanted to establish. We leave the proofs
of the other rules as exercises.

The rule for differentiating polynomials carries over to the complex case as well. If we let
P(z) be a polynomial of degree n, so

P(2) =ag+ a1z + agz® + -+ + a,2".
then mathematical induction, along with Equations (3.5) and (3.7), gives
P'(2) = a1 + 2a2z + 3a32® + - - + nayz"" L.

Again, we leave the proof of this result as an exercise.

We can use the differentiation rules as aids in determining when functions are analytic. For
example, Equation (3.9) tells us that if P(z) and Q(z) are polynomials, then their quotient ggzg
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is analytic at all points where Q(z) # 0. This condition implies that the function f(z ) = %
Ar (z
analytic for all z # 0. The square root function is more complicated. If f(z) = 2 = |z| 3 ,

then f is analytic at all points except z = 0 (because Arg(0) is undefined) and at points that
lie along the negative x axis. The argument function, and therefore the function f itself, are
not continuous at points that lie along the negative = axis.

is
)

We close this section with a complex extension of a famous theorem, the proof of which will
be given in Chapter 7.

Theorem 3.2 (L’Hopital’s rule). Assume that f and g are analytic at zo. If f(z0) = 0,
g(20) =0, and g'(29) # 0, then

lim @ = lim )
z—z0 g(z) 220 g’(z)'

Proof. See Corollary 7.11. 0

Exercises for Section 3.1 (Selected answers or hints are on page 435.)

1. Find the derivatives of the following functions.
(a) g(z) = (2% —iz+9)°.
(b) h(z) = 2Z+1 for z # —2.
(c) F(z2) = (z + (1= 3i)z + 1)(2* + 322 + 5i).
2. Show that the following functions are differentiable nowhere.
(a) f(2) =Re(z).
(b) f(z) = Im(2).

3. If f and g are entire functions, which of the following are necessarily entire?

(a) [f(2))°.
(

b) f(2)g(2).
© 13
(d) f(3).
(e) f(z—1).
(£) f(9(2))-

4. Use Equation (3.1) to verify Rule (3.5).

5. Let P(z) = ag + a1z + - - - + a, 2™ be a polynomial of degree n > 1.

(a) Show that P'(2) = aj + 2a2z + - -+ + na,z" 1.

(b) Show that, for k =0,1,...,n, ax = PU:( ) where P®) denotes the k" derivative of

P. (By convention, PO (z) = P(2).)
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6.

10.

11.

12.

13.

Let P be a polynomial of degree 2, given by
P(z) = (z— z1)(z — 22).

where z1 # z3. Show that
P'(2) 1 1

P(z) z—21 z—2z

Note: The quotient IIDDI((ZZ)) is known as the logarithmic derivative of P.

Use L’Hopital’s rule to find the following limits.

28—64
2348 -

(e) lim
z—14iy/3

. 9_
(f)  lim Zzgf’élf.
2z——1+iV3

. Use Equation (3.1) to show that = —Z%.

dzz

. Show that %z_” = —nz "1 where n is a positive integer.

Verify the identity.
d%f(Z)g(Z)h(Z) = (2)9(2)h(2) + f(2)g"(2)h(z) + f(2)g(2)h" ().

Show that the function f(z) = |z|? is differentiable only at the point 2o = 0. Hint: To
show that f is mot differentiable at zyp # 0, choose horizontal and vertical lines through
the point zg and show that % approaches two distinct values as Az — 0 along those two
lines.

Verify the following identities:

(a) £C =0, where C' is a constant: Identity (3.4).

(b) d%[f(z)+g( )] = f'(2) + 9'(2): Identity (3.7).

(0) I8 = dEIEEE it g(2) £ 0: Identity (3.9).

(d) L f(g(2)) = £'(9(2))g"(2): Identity (3.10).

(e) d%[f(z)] n[f(2)]" 1 f'(z), where n is a positive integer: Identity (3.12).

Consider the differentiable function f(z) = 2% and the two points z; = 1 and z = i.
Show that there does not exist a point ¢ on the line y = 1 — x between 1 and 7 such that
% = f'(¢). This result shows that the mean value theorem for derivatives does
not extend to complex functions.
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14. Let f(z) = 2w denote the multivalued “nth root function,” where n is a positive integer.
Use the chain rule to show that, if g(z) is any branch of the nth root function, then

9'(2) = Lg(z)

n z

in some suitably chosen domain (which you should specify).
15. Explain why the composition of two entire functions is an entire function.

16. Let f be differentiable at zp. Show that there exists a function n(z) such that

F(z) = f(20) + f"(20)(2 = 20) + n(2) (2 = 20),

where n(z) — 0 asz — 2p.

3.2 The Cauchy-Riemann Equations

In Section 3.1 we showed that computing the derivative of complex functions written in a
form such as f(z) = 22 is a rather simple task. But life isn’t always so easy. Many times we
encounter complex functions written in the form of f(z) = f(z,y) = u(x,y) + iv(z,y). For
example, suppose we had

f(z) = flz,y) = u(z,y) +iv(z,y) = (&° — 3zy?) + i3’y — ¢°). (3.13)

Is there some criterion that we can use to determine whether f is differentiable, and if so, to
find the value of f'(2)?

The answer to this question is yes, thanks to the independent discovery of two important
equations by the French mathematician Augustin-Louis Cauchy' and the German mathemati-
cian Georg Friedrich Bernhard Riemann.

First, let’s reconsider the derivative of f(z) = 22. As we have stated, the limit given in

Equation (3.1) must not depend on how z approaches zy. We investigate two such approaches:
a horizontal approach and a vertical approach to zg. Recall from our graphical analysis of
w = 22 that the image of a square is a “curvilinear quadrilateral.” For convenience, we let the
square have vertices zg = 2+ 4, 21 = 2.01 + 4, 29 = 24+ 1.014, and z3 = 2.01 + 1.01¢. Then the
image points are wyg = 3441, w1 = 3.0401+4.02¢, wo = 2.9799+4.044, and w3 = 3.02+4.06021,
as shown in Figure 3.1.

We know that f is differentiable, so the limit of the difference quotient FE=1E0) ovists no

Z— 20
matter how we approach zg = 2 + i. Thus we can approzimate f’(2+ i) by using horizontal or

vertical increments in z:

F(2.01 +4) — f(24+14) _ 0.0401 + 0.02i

e+~ ooy — @t 0.01

=4.01+2¢

and
f(241.012) — f(2419) ~ —0.0201 + 0.044

_ — 4+ 2.014.
(2+ 1.017) — (2 + 1) 0.014 a0l

fl2+i)~

'A.L. Cauchy (1789-1857) played a prominent role in the development of complex analysis, and his name
appears often throughout this text. The last name is not pronounced as “kaushee.” The first syllable has a long
“0” sound, like the word kosher, but with the second syllable having a long “e” instead of “er” at the end. Thus,

we pronounce Cauchy as “koshe.” In mathematical circles it is not kosher to mispronounce Cauchy!
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Figure 3.1: The image of a small square with vertex zy = 2 + 4, using w = 2?

These computations lead to the idea of taking limits along the horizontal and vertical directions.
When we do so, we get

f/(2—|—i):hmf(2+h+l) f(2+z):hm4h—|—h +Z2h:4+2i
h—0 h h—0 h
and . . . 2 .
f’(2—|—i):limf(2+z+”,l)_f(2+z): im _Qh_,h +Z4h:4+2i.
h—0 ih h—0 ih

We now generalize this idea by taking limits of an arbitrary differentiable complex function
and obtain an important result.

Theorem 3.3 (Cauchy-Riemann equations). Suppose that

f(z) = f(z +1y) = u(z,y) + iv(z, y)

is differentiable at the point zg = xg + iyo. Then the partial derivatives of u and v exist at the
point (l’o,yo), and

f'(20) = ux (w0, y0) + ive(z0,y0)  and also (3.14)
f'(20) = vy(z0,y0) — iy (zo, yo)- (3.15)

Equating the real and imaginary parts of Equations (3.14) and (3.15) gives

Uz (70, Y0) = vy(To,y0) and  uy(xo,yo) = —vz(To, Yo)- (3.16)

Proof. Because f is differentiable, we know that lim (M) exists regardless of the path

2—20 220
we take as z — zg. We will choose horizontal and vertical lines that pass through the point

20 = (x0,y0) and compute the limiting values of % along these lines. Equating the two

resulting limits will yield Equations (3.16). For the horizontal approach to zy, we set z = z+iyo
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and obtain

f/(ZO) _ lim f(.T + Zy()) - f(xo + Zy())
(z,y0)—(zo,y0) T+ 1Yo — (370 + ZyO)
u(z,y0) — u(zo,y0) + i[v(z,y0) — v(xo, yo)]

= lim
T—TQ Tr — X0

— lim U(CC, yO) - U(J?O’ yO) + i lim U(LE, ZUO) - /U(x()a Z/O) )
=0 T — X T—T0 T — X0

The last two limits are the partial derivatives of v and v with respect to x, so

f'(20) = uz(z0,y0) + ivz(z0, Yo)-
giving us Equation (3.14).
Along the vertical approach to zg, we have z = xg + iy, so
£/(z0) = lim f(xo +iy) — f(xo + iyo)

(z0.y)—(zowo)  To + iy — (To + iyo)
U(J:Oa y) B U(J?Q, yO) + i[U(.’L‘O, y) - ’U(l'(), ?JO)]

= lim -
Y—yo i(y — o)

— lim ’U(LU(),y) _U(‘/I:anO) — i lim u($0)y) _u(:I:OJyO).
[ecly Y—1%Y Yy=Yo Y —Yo

The last two limits are the partial derivatives of v and v with respect to y, so
f'(20) = vy(z0, y0) — iuy (0, yo)-

giving us Equation (3.15).

Since f is differentiable at zg, the limits given by Equations (3.14) and (3.15) must be equal.
If we equate the real and imaginary parts in those equations, the result is Equations (3.16),
and the proof is complete. O

Note some of the important implications of this theorem.

e If f is differentiable at zp, then the Cauchy-Riemann Equations (3.16) will be satisfied at
20, and we can use either Equation (3.14) or (3.15) to evaluate f’(zp).

e Taking the contrapositive, if Equations (3.16) are not satisfied at zp, then we know auto-
matically that f is not differentiable at zg.

e If Equations (3.16) are satisfied at zp, however, we cannot necessarily conclude that f is
differentiable at zg.

We now illustrate each of these points.
Example 3.4. We know that f(z) = 2?2 is differentiable and that f’(z) = 2z. We also have
f(2) = 2% = (z +iy)* = (2* =) +i(2ay) = ulz,y) + iv(z,y).
It is easy to verify that Equations (3.16) are indeed satisfied:

Um(may) = 2$ = Uy($7y) and uy(l‘»y) = _2y = —Ux(l‘,y)-
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Using Equations (3.14) and (3.15), respectively, to compute f'(z) gives

f'(2)
f'(2)

ug(z,y) + tvg(z,y) = 22 +i2y = 2z, and
v

y(,y) —iuy(x,y) = 20 — i(—2y) = 2z + 2y = 2z,
as expected.

Example 3.5. Show that f(z) = Z is nowhere differentiable.

Solution:

We have f(z) = f(x +iy) = z — iy = u(x,y) + iv(x,y), where u(z,y) = = and v(z,y) = —y.
Thus, for any point (z,y), uz(x,y) =1 and vy(z,y) = —1. The Cauchy-Riemann equations are
not satisfied at any point z = (z,y), so we conclude that f is nowhere differentiable.

Example 3.6. Show that the function defined by

= 221 y2 221 y2
0 when z=0

€Tr) =

is not differentiable at the point zg = 0 even though the Cauchy-Riemann equations are satisfied
at (0,0).
Solution:

We must use limits to calculate the partial derivatives at (0,0).

z3—0
12(0,0) = lig W00 =000 _ o g
z—0 z—0 z—0 X

Similarly, we can show that
uy(0,0) =v,(0,0) =0 and v,(0,0) = 1.

Hence the Cauchy-Riemann equations hold at the point (0,0).

We now show that f is not differentiable at zg = 0. Letting z approach 0 along the x axis

gives
. x2
_ zZ _ _
i f@ +OZ), 1(0) = lim £ = lim z =0 =1.
(x,0)—=(0,0) z+0:—-0 z—0 x —0 z—0x — 0

But if we let z approach 0 along the line y = x given by the parametric equations z = ¢ and
y =t, then

. 2t3 . 2t3 .
fletit) = fO) _ s +i(=5p) . it

lim - : = ;
(t,t)—(0,0) t+it—0 t—0 t+at t—0 t+ it

The two limits are distinct, so f is not differentiable at the origin.

Example 3.6 reiterates that the mere satisfaction of the Cauchy-Riemann equations is not
sufficient to guarantee the differentiability of a function. The following theorem, however,
gives conditions that guarantee the differentiability of f at zg, so that which we can use either
Equation (3.14) or (3.15) to compute f’(zg). They are referred to as the Cauchy-Riemann
conditions for differentiability.
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Theorem 3.4 (Cauchy-Riemann conditions for differentiability). Let f(z) = u(z,y) + iv(z,y)
be a continuous function that is defined in some neighborhood of the point zg = xg + 1yo. If all
the partial derivatives ug, uy, vy and vy are continuous at the point (xg,yo), and if the Cauchy-
Riemann equations u,(xo, yo) = vy(xo,y0) and uy(ro,y0) = —vz(x0, yo) hold at (zo,y0), then f
is differentiable at zo, and f'(29) can be computed with either Equation (3.14) or (3.15).

Proof. Let Az = Ax +iAy and Aw = Au + iAv, and let Az be small enough so that z lies in

the e-neighborhood of zg in which the hypotheses hold. We need to show that % approaches

the limit given in Equation (3.15) as Az approaches zero. We write the difference, Au, as

Au = u(zo + Az, yo + Ay) — u(zo, yo)-

If we subtract and add the term u(xg,yo + Ay), then we get

Au = [u(zo + Az, yo + Ay) — u(xo, yo + Ay)]
+ [U(ZEO, Yo + Ay) - U(l’o, yO)] (317)

The partial derivatives u, and u, exist, so the mean value theorem for real functions of two
variables implies that a value x* exists between xg and xg+ Az such that we can write the first
term in brackets on the right side of Equation (3.17) as

u(zo + Az, yo + Ay) — u(wo, yo + Ay) = uz(z*, yo + Ay)Az.
Furthermore, as u, and u, are continuous at (xo, o), there exists a quantity e; such that
uz (2", Yo + Ay) = ug (2o, y0) + €1

where e;1 — 0 as #* — g and Ay — 0. Because Ax — 0 forces x* — xg, we can use the
equation
u(zo + Az, yo + Ay) — u(zo, yo + Ay) = [ux(T0,%0) + 1]Az. (3.18)

the second term in brackets on the right side of Equation (3.17) satisfies the equation
u(z0,y0 + Ay) — u(wo, yo) = [uy(zo,yo) + £2]Ay. (3.19)
where €9 — 0 as Az — 0 and Ay — 0. Combining Equations (3.18) and (3.19) gives
Au = (uy + 1) Az + (uy + €2)Ay.

where partial derivatives u, and u, are evaluated at the point (xg,y0) and €; and 3 tend to
zero as Az and Ay both tend to zero. Similarly, the change Av is related to the changes Ax
and Ay by the equation

Av = (vg + €3) Az + (vy + €4) Ay,

where the partial derivatives v, and v, are evaluated at the point (zg,%0) and €3 and e4 tend
to zero as Ax and Ay both tend to zero. Combining these last two equations gives

Aw = up Az + uy Ay + i(v, Az + vy Ay) + e1Az + e0Ay + i(e3Az + e4Ay). (3.20)

We can use the Cauchy-Riemann equations in Equation (3.20) to obtain

Aw = up Ax — v Ay + (VA + up Ay) + e1Ax 4+ e9Ay + i(e3Ax + 4 Ay).
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Now we rearrange the terms and get

Aw = ug [Az + iAy] + v [Ax + iAy] + e1Ax + e2Ay + i(e3Ax + e4Ay).

Since Az = Ax + iAy, we can divide both sides of this equation by Az and take the limit
as Az — 0:

w
im — = u, +iv; + lim
Az—0 Az r r Az—0

[sle N SYAVY] N e3Ax n 4y (3.21)

Az Az ! Az ¢ Az

Because ¢1 tends to zero as Az and Ay both tend to zero, we have

ElAl‘
Az

< lim ‘51‘ =0.

- ol |52 < i

1m
Az—0 Az%O

Similarly, the limits of the other quantities in Equation (3.21) involving e9, €3, €4 are zero.
Therefore the limit in Equation (3.21) becomes

. Aw / .
ALIEO E = f (Z()) = U:(;(x(% yO) + va(x07 y0)7
which completes the proof of the theorem. O

Example 3.7. At the beginning of this section (Equation (3.13)) we defined the function
f(z) = u(z,y) +iv(x,y) = 2® — 3zy® + i(32%y — 93). Show that this function is differentiable
for all z, and find its derivative.

Solution:

We compute ug(z,y) = vy(z,y) = 32% — 3y? and uy(z,y) = —6zy = —v,(z,y), so the Cauchy-
Riemann Equations (3.16) are satisfied. Moreover, u, v, ug, uy, vz, and v, are continuous
everywhere. By Theorem 3.4, f is differentiable everywhere, and Equation (3.14) gives

F/(2) = up(x,y) + ive(2,9) = (32% — 3y%) + by = 3(2? — y* + i2zy) = 32°.
Alternatively, from Equation (3.15),
F'(2) = vy(x,y) —iuy(z,y) = (32* = 3y%) — i(—6ay) = 3(a® — y* + i2zy) = 32°.

This result isn’t surprising because (x + iy)® = 2® — 3zy? + i(32%y — 3®) and so the function f

is really our old friend f(z) = 23.

Example 3.8. Show that the function f(z) = e Y cosz + ie Ysinx is differentiable for all z

and find its derivative.

Solution:

We first write u(z,y) = e Y cosz and v(z,y) = e Ysinz and then compute the partial deriva-
tives.

uz(x,y) = vy(z,y) = —e Ysinx  and

Vg (T,y) = —Uy(.%',y) =e Ycosw.

We note that u, v, ug, Uy, vz, and vy are continuous functions and that the Cauchy-Riemann
equations hold for all values of (z,y). Hence, using Equation (3.14), we write

F'(2) = f(2,y) = ue(a,y) + v (z,y) = —e ¥ sinz +ie™¥ cosz.

The Cauchy-Riemann conditions are particularly useful in determining the set of points for
which a function f is differentiable.
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Example 3.9. Show that the function f(z) = 2 + 32y + i(y> + 322y) is differentiable on the
z and y axes, but analytic nowhere.

Solution:

Recall (Definition 3.1) that when we say a function is analytic at a point zyp we mean that the
function is differentiable not only at zg, but also at every point in some e-neighborhood of z.
With this in mind, we proceed to determine where the Cauchy-Riemann equations are satisfied.
We write u(x,y) = 23 4 3zy? and v(z,y) = 3> + 322y and compute the partial derivatives:

ug(x,y) = 322 + 3y2, vy(z,y) = 322 + 3y2, and
uy(%?/) = nya Ux(.l‘, y) = 6.%':1/

Here u, v, uy, uy, and v are continuous, and u,(x,y) = vy(z,y) holds for all (z,y). But
uy(x,y) = —vz(x,y) iff 62y = —6zy, which is equivalent to 12zy = 0. The Cauchy-Riemann
equations hold only when z = 0 or y = 0, and according to Theorem 3.4, f is differentiable only
at points that lie on the coordinate axes. But this means that f is nowhere analytic because
any e-neighborhood about a point on either axis contains points that are not on those axes.

When polar coordinates (r, ) are used to locate points in the plane, we use Expression 2.2
for a complex function for convenience; that is,

f(z) = u(z,y) +iv(z,y)
F(re?) = u(re®) + iv(re'?)
=U(r,0)+iV(r,0).

where U and V are real functions of the real variables r and 8. The polar form of the Cauchy-
Riemann equations and a formula for finding f’(z) in terms of the partial derivatives of U(r,0)
and V (r,0) are given in Theorem 3.5, which we ask you to prove in Exercise 10. This theorem
makes use of the validity of the Cauchy-Riemann equations for the functions v and v, so the
relation between them and the functions U and V-—namely, u(z,y) = u(re) = U(r,0) and
v(x,y) = v(re?) = V(r,0)—is important.

Theorem 3.5 (Polar form). Let f(z) = f(re’?) = U(r,0) + iV (r,0) be a continuous function
that is defined in some neighborhood of the point zy = roe'c. If all the partial derivatives
Uy, Ug, Vi and Vi are continuous at the point (ro,00) and if the polar form of the Cauchy-
Riemann equations,

1 1
Uy (ro,00) = %Ve(ro,@o) and Vy(ro,00) = _%UG(T(LQO)? (3.22)

holds, then f is differentiable at z9 and we can compute the derivative f'(29) by using either of
the following formulas:

f(z0) = f’(rewo) = ¢ "o [Uy(ro,00) +iV,.(r0,60)], or (3.23)
f(z0) = f'(re?) = :Oewo [Va(ro,00) — iUg(r0,60)]. (3.24)

Example 3.10. Show that, if f is given by
0

1 A
=72C0S— +17r2sin—.
2 2

(NI

Jre) = f(2) = 2



where the domain is restricted to be {re?® : 7 > 0 and — 7 < 0 < 7}, then the derivative is
given by

1 1 0 0
I'(z) = " = 57“*% cos 5 = 'ir*% sin 2
for every point in the domain.
Solution:
Write
1 6 1. 0
U(r,0) =r2 cos o and V(r,0) =r2sin 3
Then

0
27
0

1 1
Vi(r,0) = —Up(r,0) = §r—% sin 3.

1 1
Up(r,0) = ;Vg(r,@) = 57’_% cos and

Since U, V, U,, Uy, V,, and Vy are continuous at every point in the domain (note the strict
inequality in —7 < 6 < 7), we use Theorem 3.5 and Equation (3.23) to get

o (1 1
fl(z)=e¥ <r_; cos b +isr2sin 9>

2 2 2 2
= efie <1r%ezg> = lrféefi% = 11 .
2 2 222

Note that f(z) is discontinuous on the negative real axis and is undefined at the origin. Using
the terminology of Section 2.4, the negative real axis is a branch cut, and the origin is a branch
point for this function.

Two important consequences of the Cauchy-Riemann equations close this section.
Theorem 3.6. Let f = u+iv be an analytic function on the domain D. Suppose for all z € D
that |f(z)] = K, where K is a constant. Then f is constant on D.

Proof. The equation |f(z)| = K implies that, for all z = (x,y) € D,
u(z,y)* +v(z,y)* = K2 (3.25)

If K = 0, then it must be that u(z,y)? = 0 and v(x,y)? = 0 for all (z,y) € D, so f is identically
zero on D. If K # 0, then we take the partial derivative of both sides of Equation (3.25) with
respect to both x and y, resulting in

2uug + 2vv, =0 and  2uu, + 2vv, = 0.

where for brevity we write u in place of u(x,y), and so on. We can now use the Cauchy-Riemann
equations to rewrite this system as

uuy —vuy =0 and  vug +uuy = 0.

Treating u and v as coefficients, we have two equations with two unknowns, u, and u,.
Solving for u, and u, gives

0 0

Up = ———==0 and uy, = 5 =
u? + v? Yu2 42
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Note that it is important here for K # 0 in Equation (3.25).

A theorem from the calculus of real functions states that, if for all (xz,y) € D we have
both ug(z,y) = 0 and uy(xz,y) = 0, then for all (z,y) € D, u(z,y) = c¢1, where ¢; is a
constant. Using a similar argument, we find that v(z,y) = cq, for all (z,y) € D, and therefore
f(z) = f(z,y) = c1 + icy, for all (x,y) € D. In other words, f is constant on D. O

Theorem 3.7. Let f be an analytic function in the domain D. If f'(z) = 0 for all z in D,
then f is constant in D.

Proof. By the Cauchy-Riemann equations, f'(z) = ug(2)+ivy(2) = vy(2) —iuy(z) for all z € D.
By hypothesis f’(z) = 0 for all z € D, so for all z € D the functions ug, uy, vy, and v, are
identically zero. As with the conclusion to the proof of Theorem 3.6, this situation means both
u and v are constant functions, from whence the result follows. ]

Exercises for Section 3.2 (Selected answers or hints are on page 436.)

1. Use the Cauchy Riemann conditions to determine where the following functions are dif-
ferentiable, and evaluate the derivatives at those points where they exist.

(a) f(z) =iz +4i

(b) f(z) = f(z,y) = xyzifz

(c) f(z) = —2(zy + ) +i(z® — 2y — *).

(d) f(2) = 23— 32% — 3wy? + 3y + i(32%y — 62y — v3).
(e) fz) =a®+i(1—y)"

f) f(z) =22 +2z

(8) f(2) =% +y* +i2zy

(h) f(2) =12~ (2+3)

2. Let f be a differentiable function. Verify the identity |f'(z)> = u3 4 v2 = uZ + v3.
3. Find the constants a and b so that f(z) = (22 — y) + i(ax + by) is differentiable for all z.

4. Let f be differentiable at zg = roe?0. Let z approach zy along the ray = > 0, 6 = 6y and
use Equation (3.1) to show that Equation (3.14) holds.

5. Let f(z) = e®cosy + ie” siny. Show that both f(z) and f'(2) are differentiable for all 2.

6. A vector field F(z) = U(x,y) + iV (z,y) is said to be irrotational if Uy(x,y) = Vi(x,y).
It is said to be solenoidal if Uy(z,y) = —Vy(x,y). If f(z) is an analytic function, show
that F(z) = f(z) is both irrotational and solenoidal.

7. Use any method to show that the following functions are nowhere differentiable.

(a) h(z) =eYcosx +ie¥sinx.
(b) g(2) =z +7Z.

8. Use Theorem 3.5 with regard to the following.
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(a) Let f(2) = f(re?®) = Inr+i6, where r > 0 and —7 < € < 7. Show that f is analytic
in the domain indicated and that f’(z) = 1.

z

(b) Let f(z) = (In7)? — 62 +i20Inr where, r > 0 and —7 < § < 7. Show that f is
analytic for r > 0, —7 < 6 < 7, and find f'(2).

9. Show that the following functions are entire (see Definition 3.2).
(a) f(z) = coshzsiny — isinhz cosy.p
(b) g(z) = coshx cosy + isinhzsiny.

10. To prove Theorem 3.5, the polar form of the Cauchy-Riemann equations,

(a) Let f(2) = f(z,5) = f(re®) = u(re®) + iv(re®) = U(r,0) + iV (r,6). Use the
transformation z = rcosf and y = rsind (i.e., (z,y) = re?’) and the chain rules

0 0 0 0
U, = uxa—:: + uya—i and Uy = uxa—z + uy—‘z (similarly for V).
to prove that
Ur = ug cos 0 + uy sin 6, Up = —ugrsind + uyrcost; and
V, = vz cos ) + vy sin 0, Vo = —vgrsin@ + vyr cos 0.

(b) Use the original Cauchy-Riemann equations for v and v and the results of part (a)
to prove that rU, = Vpy and rV, = —Uy, thus verifying Equation (3.22)

(c¢) Use part (a) and Equations (3.14) and (3.15) to show that the right sides of Equations
(3.23) and (3.24) simplify to f'(zo).

11. Determine where the following functions are differentiable and where they are analytic.
Explain!
(a) f(z) = 2% + 3xy® +i(y® + 322y).
(b) f(2) =8z — a3 — zy? +i(2?y + v — 8y).
(€) fz) = 2% —y? +i2lay|.
12. Let f and g be analytic functions in the domain D. If f'(z) = ¢g'(z) for all z in D, then
show that f(z) = g(z) + C, where C is a complex constant.

13. Explain how the limit definition for the derivative in complex analysis and the limit
definition for the derivative in calculus are different. How are they similar?

14. Let f be an analytic function in the domain D. Show that if Re[f(z)] = 0 at all points in
D, then f is constant in D.

15. Let f be a nonconstant analytic function in the domain D. Show that the function
g9(z) = f(2) is not analytic in D.

16. Recall that, for z =z + iy, z = 2% and y = 2.

(a) Temporarily, think of z and Z as dummy symbols for real variables. With this
perspective, x and y can be viewed as functions of z and Z. Use the chain rule for a
function h of two variables to show that

oh_onox onoy _1(0h  oh
0z 0xdz Oyoz 2\0x Oy)’
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(b) Now define the operator % = %(% +ia%) that is suggested by the previous equation.
With this construct, show that if f = u + iv is differentiable at z = (z,y), then, at
the point (z,y), g—é = 3 [uz — vy +i(ys + uy)] = 0. Equating real and imaginary

parts thus gives the complex form of the Cauchy-Riemann equations: 37 =

3.3 Harmonic Functions

Let ¢(z,y) be a real-valued function of the two real variables z and y defined on a domain D.
(Recall that a domain is a connected open set.) The partial differential equation

Paz (@, y) + dyy(z,y) =0 (3.26)

is known as Laplace’s equation (sometimes referred to as the potential equation). If
b, Gz, Gys aa, Guys Pya, and ¢y, are all continuous, and if ¢(z,y) satisfies Laplace’s equation,
then ¢(z,y) is harmonic on D. Harmonic functions are important in applied mathematics,
engineering, and mathematical physics. They are used to solve problems involving steady state
temperatures, two-dimensional electrostatics, and ideal fluid flow. In Chapter 10 we describe
how complex analysis techniques can be used to solve some problems involving harmonic func-
tions. We begin with an important theorem relating analytic and harmonic functions.

Theorem 3.8. Let f(z) = u(x,y) + iv(z,y) be an analytic function on a domain D. Then
both w and v are harmonic functions on D. In other words, the real and imaginary parts of an
analytic function are harmonic.

Proof. In Corollary 6.3 we will show that, if f(z) is analytic, then all partial derivatives of u
and v are continuous. Using that result here, we see that, as f is analytic, u and v satisfy the
Cauchy-Riemann equations

Uy = vy and Uy = —v;.

Taking the partial derivative with respect to z of each side of these equations gives
Ugy = Vyp  and  Uyy = —Vgy.

Similarly, taking the partial derivative of each side with respect to y yields
Ugy = Vyy aNd Uy = —Vgy.

The partial derivatives uzy, Uys, Vzy, and vy, are all continuous, so we use a theorem from the
calculus of real functions that states that the mixed partial derivatives are equal; that is,

Ugy = Uyy aNd  Ugy = Vyg.

Combining all these results finally gives U, +uyy = Vye—Vzy = 0, and vy +Vyy = —Uyz+Ugzy = 0.
Therefore both © and v are harmonic functions on D. O

If we have a function u(x,y) that is harmonic on the domain D and if we can find another
harmonic function v(z,y) such that the partial derivatives for u and v satisfy the Cauchy-
Riemann equations throughout D, then we say that v(x,y) is a harmonic conjugate of
u(z,y). It then follows that the function f(z) = u(z,y) + iv(x,y) is analytic on D.
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Example 3.11. If u(z,y) = 2% — y?, then uz.(2,y) + uyy(z,y) = 2 — 2 = 0; hence u is a
harmonic function for all z. We find that v(z,y) = 2xy is also a harmonic function and that

Uy = vy = 2x and uy = —v; = —2y.
Therefore v is a harmonic conjugate of u, and the function f given by
f(z) =2 — oy +i2zy = 22

is an analytic function.

Theorem 3.8 makes the construction of harmonic functions from known analytic functions
an easy task.

Example 3.12. The function f(z) = 23 = 23 — 3xy? +i(32%y — ¢?) is analytic for all values of
z. Hence it follows that
u(@,y) = Re[f(2)] = 2° — 3xy”

is harmonic for all z, and that

v(z,y) =Im[f(2)] = 3a*y — ¢°

is a harmonic conjugate of u(x,y).

Figures 3.2 and 3.3 show the graphs of these two functions. The partial derivatives are
ug(r,y) = 322 — 3y, uy(x,y) = —6zy, vo(z,y) = 6zy, and v,(z,y) = 322 — 3y%. They satisfy
the Cauchy-Riemann equations because they are the real and imaginary parts of an analytic
function. At the point (x,y) = (2,—1), we have u;(2,—1) = v,(2,—1) = 9, and these partial
derivatives appear along the edges of the surfaces for u and v where x = 2 and y = —1.
Similarly, u, (2, —1) = 12 and v,(2, —1) = —12 also appear along the edges of the surfaces for u
and v where z =2 and y = —1.

Figure 3.2: u(z,y) = 23 — 3xy? Figure 3.3: v(z,y) = 32%y — 3

We can use complex analysis to show easily that certain combinations of harmonic functions
are harmonic. For example, if v is a harmonic conjugate of u, then their product ¢(z,y) =
u(z,y)v(z,y) is a harmonic function. This condition can be verified directly by computing the
partial derivatives and showing that Equation (3.26) holds, but the details are tedious. If we
use complex variable techniques instead, we can start with the fact that f(z) = u(z,y)+iv(z,y)
is an analytic function. Then we observe that the square of f is also an analytic function:

[f(2)]7 = [u(z, y)]? — [z, y)]* +i2u(z, y)o(z, y).
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We then know immediately that the imaginary part, 2u(z, y)v(z,y), is a harmonic function
by Theorem 3.8. A constant multiple of a harmonic function is harmonic, so it follows that ¢ is
harmonic. We leave as an exercise to show that, if u; and us are two harmonic functions that
are not related in the preceding fashion, then their product need not be harmonic.

Theorem 3.9 (Construction of a harmonic conjugate). Let u(x,y) be harmonic in an e-
neighborhood of the point (xo,yo). Then there exists a conjugate harmonic function v(z,y)
defined in this neighborhood such that f(z) = u(x,y) + v(x,y) is an analytic function.

Proof. A conjugate harmonic function v will satisfy the Cauchy-Riemann equations u, = vy
and u, = —v,. Assuming that such a function exists, we determine what it would have to look
like by using a two-step process. First, we integrate v, (which should equal u,) with respect to
y and get

o) = [ usey)dy +Cla). (3.27)

where C(x) is a function of z alone that is yet to be determined. Second, we compute C’(x) by
differentiating both sides of this equation with respect to z and replacing v, with —u, on the
left side, which gives

) = 5 [ sl dy + (@),

It can be shown (we omit the details) that because u is harmonic, all terms except those
involving x in the last equation will cancel, revealing a formula for C'/(x) involving x alone.
Elementary integration of the single-variable function C'’(z) can then be used to discover C(z).
We finally observe that the function v so created indeed has the properties we seek. O

Technically we should always specify the domain of function when defining it. When no
such specification is given, it is assumed that the domain is the entire complex plane, or the
largest set for which the expression defining the function makes sense.

Example 3.13. Show that u(x,y) = zy® — 23y is a harmonic function and find a conjugate
harmonic function v(z,y).

Solution:

We follow the construction process of Theorem 3.9. The first partial derivatives are
ug(z,y) = y> — 322y and uy(z,y) = 3zy? — 22, (3.28)

To verify that w is harmonic, we compute the second partial derivatives and note that ug,(z, y)+
Uyy(x,y) = —6zy + 62y = 0, so u satisfies Laplace’s Equation (3.26). To construct v, we start
with Equation (3.27) and the first of Equations (3.28) to get

1 3
va) = [ =382 dy+ Cw) = ot = Sa% + o).

Differentiating the left and right sides of this equation with respect to z and using —uy(z,y) =
vz (z,y) and Equations (3.28) on the left side yields

—3xy? + 23 =0 - 329° + C'(x),
which implies that

C'(x) = 2.
Integrating to get C(x) and using the prior expression for v(x,y) gives
1 1
v(z,y) = Zy‘* - §$2y2 + 1x4 + K, where K is some constant.
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Harmonic functions arise as solutions to many physical problems. Applications include two-
dimensional models of heat flow, electrostatics, and fluid flow. We now give an example of the
latter.

We assume that an incompressible and frictionless fluid flows over the complex plane and
that all cross sections in planes parallel to the complex plane are the same. Situations such as
this occur when fluid is flowing in a deep channel. The velocity vector at the point (x,y) is

V(z,y) = p(z,y) +iq(z,y), (3.29)

C_—x

Figure 3.4: The vector field V(z,y) = p(z,y) +iq(x,y), which can be considered as a fluid flow

which we illustrate in Figure 3.4.

The assumption that the flow is irrotational and has no sources or sinks implies that both
the curl and divergence vanish; that is, ¢, — p, = 0 and p, + ¢, = 0. Hence p and ¢ obey the
equations

p$($7y) = —qy(a:,y) and py(:v,y) = qx(m7y)‘ (330)

Equations (3.30) are similar to the Cauchy-Riemann equations and permit us to define a
special complex function:

f(2) = u(z,y) +iv(z,y) = p(z,y) —iq(z,y). (3.31)

Here we have u, = ps, uy = py, Vo = —¢z, and vy = —q,. We can use Equations (3.30) to
verify that the Cauchy-Riemann equations hold for f:

ux(az,y) = px(x,y) = _Qy('I,y) = Uy(IE,y) and
uy(x7y> :py(:l?,y) = %c(wvy) - _Uz(x7y)'

Assuming that the functions p and ¢ have continuous partials, Theorem 3.4 guarantees that
function f defined in Equation (3.31) is analytic and that the fluid flow of Equation (3.29) is
the conjugate of an analytic function; that is,

Viz,y) = f(2).

In Chapter 6 we prove that every analytic function f has an analytic antiderivative F;
assuming this to be the case, we can write

where F'(z) = f(z).

Theorem 3.8 implies that ¢(z,y) is a harmonic function. Using the vector interpretation of
a complex number, the gradient of ¢ can be written as

grad¢($a y) = ¢x(1:a y) + Z'st(l', y)
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The Cauchy-Riemann equations applied to F(z) give ¢y (z,y) = —t(x,y). Making this
substitution in the preceding equation yields

gradd(z,y) = ¢z (z,y) — e (2, y) = ¢u(,y) + ithe(, y).

Equation (3.14) says that ¢.(z,y) + itpx(z,y) = F'(z), which by the preceding equation
and Equation (3.32) implies that

gradg(z,y) = F'(z) = f(2).

Finally, from Equation (3.29) ¢ is the scalar potential function for the fluid flow, so
V(z,y) = grade(z, y).

The curves given by {(z,y) : ¢(x,y) = constant} are called equipotentials. The curves
{(z,y) : Y¥(x,y) = constant} are called streamlines and describe the path of fluid flow. In
Section 10.4 we show that the family of equipotentials is orthogonal to the family of streamlines,
as depicted in Figure 3.5.

Equipotential

/

/

Streamline

Figure 3.5: The families of orthogonal curves {(z,y) : ¢(z,y) = constant} and {(z,y) :
Y(x,y) = constant} for the function F(z) = ¢(z,y) + i(x,y)

Example 3.14. Show that the harmonic function ¢(z,y) = 2% — 32 is the scalar potential
function for the fluid flow expression V(z,y) = 2z — i2y.

Solution:

We can write the fluid flow expression as
V(z,y) = f(z) =2z + 2y = 2z.

An antiderivative of f(z) = 2z is F(z) = 22, and the real part of F(z) is the desired harmonic
function:
¢(z,y) = Re[F(2)] = Im [2? — y? + i2zy] = 2® —y°.

Note that the hyperbolas ¢(z,y) = 22 — ? = C are the equipotential curves and that the

hyperbolas ¥ (x,y) = 2zy = C are the streamline curves; these curves are orthogonal, as shown
in Figure 3.6.
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y
\ The fluid flow V(x,y) =2x —i 2y

6 .
~— Equipotential
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4
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— Streamline
2

2

Figure 3.6: The equipotential curves 22> — y?> = C and streamline curves 2zy = C for the

function F(z) = 22

Exercises for Section 3.3 (Selected answers or hints are on page 436.)

1. Determine where the following functions are harmonic.
(a) u(z,y) = €e*cosy and v(z,y) = e*siny.
(b) u(z,y) = In(z® + y?) for (z,y) # (0,0).

2. Does an analytic function f(2) = u(z,y)+iv(x,y) exist for which v(z,y) = 23 +y3? Why
or why not?

3. Let a, b, and ¢ be real constants. Determine a relation among the coefficients that will
guarantee that the function ¢(z,y) = az? + by + cy? is harmonic.

4. Let v(z,y) = arctan(¥) for  # 0. Compute the partial derivatives of v and verify that v
satisfies Laplace’s equation.

5. Find an analytic function f(z) = u(z,y) + iv(z,y) given the following information.
(a) u(z,y)
(b) w(z,y) = sinysinhx.
(¢) v(z,y)
(d) v(z,y)

6. Let uy(z,y) = 22 — y? and uz(z,y) = 23 — 3vy?. Show that u; and uy are harmonic
functions but that their product u;(x,y)ua(z,y) is not a harmonic function.

7. Let u(x,y) be harmonic on a region D that is symmetric about the line y = 0. Show that
U(z,y) = u(z, —y) is harmonic on D. Hint: Use the chain rule for differentiation of real
functions and note that u(z, —y) is really the function u(g(z,y)), where g(z,y) = (z, —y).

8. Let v be a harmonic conjugate of w. Show that —u is a harmonic conjugate of v.

2

9. Let v be a harmonic conjugate of u. Show that h = u? — v? is a harmonic function.
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10.

11.

12.

13.

14.

15.

16.

17.

Suppose that v is a harmonic conjugate of v and that u is a harmonic conjugate of v.
Show that u and v must be constant functions.

Let f(2) = f(re’?) = u(r, 0)+iv(r,0) be analytic on a domain D that does not contain the
origin. Use the polar form of the Cauchy-Riemann equations uwg = —rv,, and vg = ru,.
Differentiate them first with respect to # and then with respect to r. Use the results to
establish the polar form of Laplace’s equation:

20 (7, 0) + 7 (7, 0) + ugg(r, 0) = 0.

Use the polar form of Laplace’s equation given in Exercise 11 to show that the following
functions are harmonic.

(a) u(r,0) = (r+ L)cos® and v(r,0) = (r — 1)sin.

(b) u(r,0) =1r"cosnf and v(r,0) = r™sinnb.

The function F(z) = % is used to determine a field known as a dipole.

(a) Express F(z) in the form F(z) = ¢(x,y) + iv(x,y).

(b) Sketch the equipotentials ¢ = 1, %, i and streamlines ¢ = 1, %, %.
Assume that F(z) = ¢(z,y) + i (z,y) is analytic on the domain D and that F'/(z) # 0 on
D. Consider the families of level curves {¢(z,y) = constant} and {¢(x,y) = constant},
which are the equipotentials and streamlines for the fluid flow V(z,y) = F'/(z). Prove
that the two families of curves are orthogonal.

Hint: Suppose that (xg, yo) is a point common to the two curves ¢(z,y) = ¢; and ¥ (z,y) =

co. Use the gradients of ¢ and 1 to show that the normals to the curves are perpendicular.

We introduce the logarithmic function in Chapter 5. For now, let F(z) = Logz =
In |z|4+iArg z. Here we have ¢(z,y) = In|z| and ¢(z,y) = Argz. Sketch the equipotentials
¢=0,1n2,In3, In4 and streamlines ¢ = %” for k=0,1,...,7.

Theorem 3.9 claims that it is possible to prove that C'’/(x) is a function of x alone. Prove
this assertion.

Discuss and compare the statements “u(zx,y) is harmonic” and “u(x,y) is the imaginary
part of an analytic function.”
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Chapter 4

Sequences, Series, and Fractals

Overview

In 1980 Benoit Mandelbrot led a team of mathematicians in producing some stunning computer
graphics from very simple rules for manipulating complex numbers. This event marked the
beginning of a new branch of mathematics known as fractal geometry. Many of the tools
needed to appreciate Mandelbrot’s work are contained in this chapter. We look at extensions
to the complex domain of sequences and series, ideas that are part of a standard calculus course.

4.1 Sequences and Series

In formal terms, a complex sequence is a function whose domain is the positive integers and
whose range is a subset of the complex numbers. The following are examples of sequences:

1 1
n n
g(n)zei% for n=1,2,3,...; (4.2)
1 k
h(k)=5—i—3i+<.> for k=1,23 ... and (43)
141
(n) = 14_1” f =1,2,3 (4.4)
rin)={7+3 or n=1,2,3,.... )

For convenience, at times we use the term sequence rather than complex sequence. If we want
a function s to represent an arbitrary sequence, we can specify it by writing s(1) = z1, s(3) = z3,
and so on. The values z1, 29, 23, ..., are called the terms of a sequence, and mathematicians,
being generally lazy when it comes to such things, often refer to 21, 29, 23... as the sequence
itself, even though they are really speaking of the range of the sequence when they do so. You
will usually see a sequence written as {z,}22 1, {2,}7°, or, when the indices are understood, as
{zn}. Mathematicians are also not so fussy about starting a sequence at z; so that {z,}5° _,
{2z}, --- would also be acceptable notation provided all terms were defined. For example,
the sequence r given by Equation (4.4) could be written in a variety of ways:

(G, (G- (G}
(G G -
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The sequences f and g given by Equations (4.1) and (4.2) behave differently as n gets
larger. The terms in Equation (4.1) approach 2 + 5i = (2,5), but those in Equation (4.2) do
not approach any particular number, as they oscillate around the eight eighth roots of unity
on the unit circle. Informally, the sequence {z,}° has ¢ as its limit as n approaches infinity,
provided the terms z, can be made as close as we want to ¢ by making n large enough. When
this happens, we write

lim z,=¢ or z,—( as n— oco. (4.5)
n—oo

If lim z, = ¢, we say that the sequence {z,}{° converges to (.
n—oo

We need a rigorous definition for Statement (4.5), however, if we are to do honest mathe-
matics.

Definition 4.1 (Limit of a Sequence). lim, _,~ 2z, = ¢ means that for any real number € > 0
there corresponds a positive integer N, (which depends on €) such that z, € D.(¢) whenever
n > N.. That is, |zn, — (| < € whenever n > N..

Remark 4.1. The reason that we use the notation N, is to emphasize the fact that this number
depends on our choice of €. Sometimes, for convenience, we drop the subscript.

Figure 4.1 illustrates a convergent sequence.

{All terms z,,, forn > N,

/ are inside this disk D, (£).
" /

P ;

Figure 4.1: A sequence that converges to ¢

In form, Definition (4.1) is exactly the same as the corresponding definition for limits of
real sequences. In fact, a simple criterion casts the convergence of complex sequences in terms
of the convergence of real sequences.

Theorem 4.1. Let z,, = z,, + 1y, and ( = u + tv. Then,

lim 2z, =(¢ iff (4.6)
n—oo

lim z, =u and lim y, =v. (4.7)
n—oo n—oo

Proof. First we assume that Statement (4.6) is true and then deduce the truth of Statement
(4.7). Let € be an arbitrary positive real number. To establish Statement (4.7), we must show
(1) that there is a positive integer N, such that the inequality |z, — u| < ¢ holds whenever
n > N and (2) that there is a positive integer M. such that the inequality |y, — v| < € holds
whenever n > M.. Because we are assuming Statement (4.6) to be true, we know (according to
Definition 4.1) that there is a positive integer N, such that z, € D.(¢) if n > N.. Recall that
zn € D(C) is equivalent to the inequality |z, — (| < . Thus, whenever n > N., we have

|20 — u| = [Re(zn — ()]
<lzn — (| (by Inequality (1.21))
<e.
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Similarly, we can show that there is a number M. such that |y, — v| < € whenever n > M,
which proves Statement (4.7).

To complete the proof of this theorem, we must show that the conditions of Statement (4.7)
imply Statement (4.6). Let € > 0 be an arbitrary real number. By Statement (4.7), there exist
positive integers N, and M, such that

|z, whenever n > N;, and (4.8)

| |
s =
VANEWAN
T IR

[Yn whenever n > M.. (4.9)

Let L. = max{Ng, M.}; then, if n > L.,

‘Zn - C‘ = ‘(mn "‘iyn) - (u—i—iv)]
= ‘(xn - u) +i(yn - U)|

<l|zp —ul + |i(y, —v)| What is the reason for this step?)

= |xn — ul|yn — v| because |i| = 1)

9 9

(

= |xp —u|+ || |yn —v|  (by properties of absolute value)
(
(

A

B + 5 by Statements (4.8) and (4.9))

O

We needed to show the strict inequality |z, — (| < ¢, and the next-to-last line in the proof
gives us precisely that. Note also that we have been speaking of the limit of a sequence. Strictly
speaking, we are not entitled to use this terminology because we haven’t proved that a complex
sequence can have only one limit. The proof, however, is almost identical to the corresponding
result for real sequences, and we leave it as an exercise.

Example 4.1. Find lim z, if z, = %
n—oo

Solution:

We write z, = x,, + 1y, = ﬁ + Z”TH Using results concerning sequences of real numbers,

we find that lim z, = lim -~ = 0 and lim Yp = lim ntl — 1. Therefore, lim z, =
n—oo n—oo \/ﬁ n—oo n—oo n—oo

lim Yot

n—o00 n

Example 4.2. Show that {(1 4 ¢)"} diverges.

Solution:
We have

zn = (14+4)" = (v/2)" cos %T +i(V/2)" sin %r

The real sequences {(v/2)" cos 2} and {(v/2)"sin 2T} both diverge, so we conclude that the
sequence {(1+ ¢)"} diverges.

Definition 4.2 (Bounded Sequence). A complex sequence {z,} is bounded provided that there
exists a positive real number R and an integer N such that |z,| < R for all n > N. In other
words, for n > N, the sequence {z,} is contained in the disk Dg(0).
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Bounded sequences play an important role in some newer developments in complex analysis
that are discussed in Section 4.2. A theorem from real analysis stipulates that convergent
sequences are bounded. The same result holds for complex sequences.

Theorem 4.2. If {z,} is a convergent sequence, then {z,} is bounded.
Proof. The proof is left as an exercise. O

As with the real numbers, we also have the following definition.

Definition 4.3 (Cauchy Sequence). The sequence {z,} is a Cauchy sequence if for every
e > 0 there is a positive integer N, such that if n, m > N, then |z, — zm| < €, or, equivalently,
Zn — zm € D:(0).

The following theorem should now come as no surprise.

Theorem 4.3. If {z,} is a Cauchy sequence, {z,} converges.

Proof. Let z, = x, + iy,. Using the techniques of Theorem 4.1, we can easily show that both
{z,} and {y,} are Cauchy sequences of real numbers. Since Cauchy sequences of real numbers
are convergent, we know that

lim x, =29 and lim y, =1y
n—o0 n—oo

for some real numbers xg and yg. By Theorem 4.1, then, lim,,_,o 2, = 20, Where zy = x¢ + yo.
In other words, the sequence {z,} converges to z. O

One of the most important notions in analysis (real or complex) is a theory that allows us
to add up infinitely many terms. To make sense of such an idea we begin with a sequence {z,},
and form a new sequence {S,}, called the sequence of partial sums, as follows.

51221,
Sy = 21 + 29,
S3 =21 + 29 + 23,

n
Sp=21+2m+ tm=) 2,
k=1

o0

Definition 4.4 (Infinite Series). The formal expression Y zr = z1+ 22+ -+ 2zn+- - is called
k=1

an infinite series, and z1, zo, ... are called the terms of the series.

Definition 4.5 (Convergent Series). If there is a complex number S for which
n— o0

n
S = lim S, = lim sz,
n—0o0
k=1

o0
we say that the infinite series . z, converges to S, and that S is the sum of the infinite

k=1
o0
series. When convergence occurs, we write S = ) 2.
k=1
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o0
Definition 4.6 (Absolutely Convergent Series). The series Y zp is said to be absolutely
k=1

o0
convergent provided that the (real) series of magnitudes _ |zp| converges.
k=1
Definition 4.7 (Divergent Series). If a series does not converge, we say that it diverges.

Remark 4.2. The first finitely many terms of a series do not affect its convergence or diver-

gence and, in this respect, the beginning index of a series is irrelevant. Thus, we will without
o0 o

comment conclude that if a series Y, zj converges, then so does Y zi, where 2, z1,..., 2N
k=N+1 k=0
is any finite collection of terms. A similar remark applies to determining divergence of a series.

As you might expect, many of the results concerning real series carry over to complex series.
We now give several of the more standard theorems for complex series, along with examples of
how they are used.

Theorem 4.4. Let z, = xp, + iyp, and S =U +iV. Then
o0 o0
S S YO
n=1 n=1
o o]
U:Zmn and V:Zyn.
n=1 n=1

Proof. Let U, Z Ty, Vo = Z Yk, and S, = U, + iV,,. We use Theorem 4.1 to conclude

that hm S, = hm (U + zV) U +1V = S iff both 11_>m U, = U and h_>m Vo, = V. The

n
completlon of the proof now follows from Definition 4.4. O
(o ¢]
Theorem 4.5. If Y z, is a convergent complex series, then hm zn = 0.
n=1
Proof. The proof is left as an exercise. O

125 n
Example 4.3. Show that the series Z m > {nQ +il= ) ] is convergent.

n=1 n=1

Solution:

Recall that the real series Z -z and Z

are convergent. Hence, Theorem 4.4 implies

that the given complex serles 1s convergent

00 no s
Example 4.4. Show that the series ) # = Z [( DA } is divergent.
n=1 n=1
Solution:
o0
We know that the real series ) % is divergent. Hence, Theorem 4.4 implies that the given

n=1
complex series is divergent.
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oo
Example 4.5. Show that the series »_ (1 4+ ¢)" is divergent.

n=1
Solution:
Here we set 2, = (1+14)" and observe that lim |z,| = lim (v/2)” = co. Thus lim z, # 0, and
n—oo n—oo n—oo

Theorem 4.5 implies that the series is not convergent; hence it is divergent.

o0 o0
Theorem 4.6. Let Y z, and > w, be convergent series and let ¢ be a complex number. Then
n=1 n=1

i czp =c i Zn and (4.10)

n=1

[o.¢]
Zzn—i—wn Zzn—i—an
n=1

Proof. The proof is left as an exercise. O

o0

o0
Definition 4.8 (Cauchy Product). Let Y a, and ) b, be convergent series, where a, and

n=0 n=
b, are complexr numbers. The Cauchy product of the two series is defined to be the series
oo n
> cn, where ¢ = Y arby_.
n=0 k=0

Theorem 4.7. If the Cauchy product converges, then

S (54) ()

n=0

Proof. The proof can be found in a number of texts—for example, Infinite Sequences and Series,
by Konrad Knopp (translated by Frederick Bagemihl; New York: Dover, 1956). O

o
Theorem 4.8 (Comparison test). Let Y M, be a convergent series of real nonnegative terms.
n=1
If {z,} is a sequence of complex numbers and |z,| < M, holds for all n, then the infinite series
o0

[&.8]
Yo ozn = Y (xn +iyy) converges.
n=1

n=1

Proof. Using Equations (1.21), we determine that |z,| < |z,| < M, and |y,| < |z, < M,

[ee] [ee]
holds for all n. By the comparison test for real series, we conclude that Y |z,| and ) |yn]

n=1 n=1
o0 o0
are convergent. An absolutely convergent real series is convergent, so Z z, and > y, are
=1 n=1
convergent With these results, together with Theorem 4.4, we conclude that the infinite series
Z Zn = Z Tp + 10 Z Yn 1s convergent. O
n=1
o0 o0
Corollary 4.1. If > |z,| converges, then > z, converges. In other words, absolute conver-
n=1 n=0
gence implies convergence for complexr series as well as for real series.
Proof. The proof is left as an exercise. O
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Example 4.6. Show that E ‘HLM converges.

Solution:
(o)
We calculate |z,| = ‘ 3;‘; = 1, = M,. Using the comparison test and the fact that ).
n=1
converges, we determine that Z ‘ 3+412 ‘ converges, and hence so does Z 3;::;2) .

n=1

Exercises for Section 4.1 (Selected answers or hints are on page 437.)

1. Find the following limits.

(a) lim (3 +4)"
. 7’L+(’L)n
() 3, =
. 7L2 i2n
(€) Jim, =5

2. Show that li_>m (z)% = 1, where (2)% is the principal value of the nth root of i.
n—oo

3. Suppose that lim z, = zp. Show that lim Z, = Zj.
n—oo n—oo

4. Suppose that the complex series {z,} converges to (. Show that {z,} is bounded in two
ways.

(a) Write z, = z,, + iy, and use the fact that convergent series of real numbers are

bounded.
(b) For e = 1, use Definitions 4.1 and 4.2 to show that there is some integer N such that,
forn > N, |z,| = [(+ (2, —C)| < [¢|+1. Then set R = max{|z1|, |22|,...,|2n|, (+1}.
5. Show that Z (n+1+z — n%”) — .

6. Suppose that Z zn, = S. Show that E Zn=25.

n=1

i 1+iyn oyigt? ?
7. Does nh_)rrolo( \/5) exist? Why or why not’

8. Let z, = e £ 0, where 6,, = Arg(z,).

a) Suppose hm T = 1o and hm 0, = 6y. Show that lim 7,e" = ryei.
(a) Supp

n—oo
(b) Find an example of a sequence {z,} = {r,e?"} where lim z, = 2y = rpe’® and
n—oo

lim r, = rg, but lim 0,, does not exist.
n—oo — 00

(c) If {zn} = {rnew"} is it possible to have lim z, = 29 = roe’, but lim r, does not
n—oo n—oo

exist?

9. Show that, if Z zn converges, then hm zn = 0.
Hint: z, = S Sn,l
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10. State

—~

with justification) whether the following series converge.

A
R
M2
3|3

S
Il
—

=
NoE:
™
+
g
N~—

3
Il
—

oo
11. Let > (xn +iyn) = u+iv. If ¢ = a + ib is a complex constant, show that

gjl(a b (2 + i) = (a+ ib) (u + ).

o0

o0
< 2. [zl

n=0

oo
12. If > z, converges, show that

n=0

Zn
n=0

13. Complete the proof of Theorem 4.1. In other words, suppose that lim z, = (, where
n—oo

Zn = Tpn + 1y and ( = u + tv. Prove that lim y, = v.
n—oo

14. A side comment asked you to justify the first inequality in the proof of Theorem 4.1. Give
a justification.

15. Prove that a sequence can have only one limit. Hint: Suppose that there is a sequence
{zn} such that z, — (; and z, — (2. Show this assumption implies {; = (2 by proving
that for all € > 0, |(1 — (2] < e.

16. Prove Corollary 4.1.

17. Prove that lim z, =0 iff lim |z,| = 0.

4.2 Julia and Mandelbrot Sets

An impetus for studying complex analysis is the comparison of properties of real numbers and
functions with their complex counterparts. In this section we take a look at Newton’s method
for finding solutions to the equation f(z) = 0. Then, by examining the more general topic of
iteration, we will plunge into a breathtaking world of color and imagination. The mathematics
surrounding this topic has generated a great deal of popular attention in the past few years.

Recall from calculus that Newton’s method proceeds by starting with a function f(z) and

an initial “guess” of xy as a solution to f(x) = 0. We then generate a new guess z1 by the
. _ . f@o) . . . . . _
computation 1 = g F(z0)" Using z1 in place of zg, this process is repeated, giving xo =

] — }J:/((le)). We thus obtain a sequence of points {xy}, where xp 1 = z) — }c(,ﬁi) The points

{xr}72,, are called the iterates of xg. For functions defined on the real numbers, this method
gives remarkably good results, and the sequence {xj} often converges to a solution of f(x) =0
rather quickly. In the late 1800s, the British mathematician Arthur Cayley investigated the
question of whether Newton’s method can be applied to complex functions. He wrote a paper
giving an analysis for how this method works for quadratic polynomials and indicated his
intention to publish a subsequent paper for cubic polynomials. Unfortunately, Cayley died
before producing this paper. As you will see, the extension of Newton’s method to the complex
domain and the general question of iteration are quite (if you’ll pardon the pun) complez.
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Example 4.7. Trace the next five iterates of Newton’s method for an initial guess of zg = %4—

as a solution to the equation f(z) = 0, where f(z) = 2% + 1.

Solution:

For any guess z for a solution, Newton’s method gives as the next guess the number z —

22—1
2z

23

Table 4.1 gives the iterates, rounded to five decimal places.

f(zk)

1

1

1

1

1

0.25000 + 0.250001

1.00000 + 0.125001¢

=

GURTWINIRITO|

0.00000 + 1.00000¢z | 0.00000 + 0.00000¢

Table 4.1: The iterates of zy = 1 + 1i for Newton’s method applied to f(z) = 2% + 1.

Figure 4.2 shows the relative positions of these points on the z plane. Note that the points
z4 and z5 are so close together that they appear to coincide, and that the value for z5 agrees
to five decimal places with the actual solution z = i.

12 1

z4and z5
21 ) /

23

2 08 T
0.6 T
04 1

0.2+ 20

- - - - - + X
-0.75 -0.5 -0.25 025 05 0.75

-0.2y

Figure 4.2: The iterates of zo = 1 + 1i for Newton’s method applied to f(z) = 2%+ 1

The complex version of Newton’s method also appears to work quite well. Recall, however,
that with functions defined on the reals, not every initial guess produces a sequence that
converges to a solution. Example 4.8 shows that the same is true in the complex case.

Example 4.8. Show that Newton’s method fails for the function f(z) = 22 + 1 if the initial
guess is a real number.

Solution:

From Example 4.7 we know that, for any guess z as a solution of 22 + 1 = 0, the next guess at
2

a solution is N(z) = z — ]f,((zz)) = 21 We let 29 be any real number and {z;} be the sequence
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of iterations produced by the initial seed zy. If for any k, zx = 0, the procedure terminates,
as zx+1 will be undefined. If all the terms of the sequence {z;} are defined, an easy induction
argument shows that all the terms of the sequence are real. Because the solutions of 22 +1 =0
are +i, the sequence {z;} cannot possibly converge to either solution. In the exercises we ask
you to explore in detail what happens when zg is in the upper or lower half-plane.

The case for cubic polynomials is more complicated than that for quadratics. Fortunately,
we can get an idea of what’s going on by doing some experimentation with computer graphics.
We begin with the cubic polynomial f(z) = 2% + 1. (Recall that the roots of this polynomial
are at —1, % + @i, and % — @z) We associate a color with each root (blue, red, and green,
respectively). We form a rectangular region R, which contains the three roots of f(z), and
partition this region into equal rectangles R;;. We then choose a point z;; at the center of each
rectangle and for each of these points we apply the following algorithm.

1. With N(z) = z — J{ ,((ZZ)), compute N(z;;). Continue computing successive iterates of this
initial point until we either are within a certain preassigned tolerance (say, €) of one of the
roots of f(z) = 0, or until the number of iterations has exceeded a preassigned maximum.

2. If Step 1 leaves us within € of one of the roots of f(z), we color the entire rectangle R;;
with the color associated with that root. Otherwise, we assume that the initial point z;;
does not converge to any root, and we color the entire rectangle yellow.

Note that this algorithm doesn’t prove anything. In Step 2, there is no a priori reason to
justify the assumption mentioned, nor is there any necessity for an initial point z;; to have its
sequence of iterates converging to one of the roots of f(z) = 0 just because a particular iteration
is within € of that root. Finally, the fact that one point in a rectangle behaves in a certain way
does not imply that all the points in that rectangle behave in a like manner. Nevertheless, we
can use this algorithm as a basis for mathematical explorations. Indeed, computer experiments
such as the one described have contributed to a lot of exciting mathematics during the past 30
years. Figure 4.3a shows the results for the cubic polynomial f(z) = 23 + 1.

The points in the blue, red, and green regions are those “initial guesses” that will converge

to the roots —1, % + @i, and % — ‘égz', respectively. (The roots themselves are located in the
middle of the three largest colored regions.) The complexity of this picture becomes apparent
when you observe that, wherever two colors appear to meet, the third color emerges between
them. But then, a closer inspection of the area where this third color meets one of the other
colors reveals again a different color between them. This process continues with an infinite

complexity.

There appear to be no yellow regions with any area in Figure 4.3a, indicating that at
least most initial guesses zg at a solution to 2% + 1 = 0 will produce a sequence {z;} that
converges to one of the three roots. Figure 4.3b demonstrates that this outcome does not
always occur. It shows the results of applying the preceding algorithm to the polynomial
f(2) = 23+ (=0.26 + 0.02i)z + (—0.74 + 0.02i).

The yellow area shown is often referred to as the rabbit. It consists of a main body and two
ears, and is an example of a fractal image. Mathematicians use the term fractal to indicate an
object that is self-similar and infinitely replicating. Figure 4.4 illustrates this phenomenon by
zooming in on a portion of Figure 4.3b. You can see that each of the ears consists of a main
body and two ears, and so on.
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(a) f(z) =23 +1 (b) £(2) = 2% + (—0.26 + 0.02i)z + (—0.74 + 0.02i)

Figure 4.3: Newton’s method applied to two different cubics

Figure 4.4: A zoom of the rabbit

In 1918, the French mathematicians Gaston Julia and Pierre Fatou noticed this fractal
phenomenon when exploring iterations of functions not necessarily connected with Newton’s
method. Beginning with a function f(z) and a point zg, they computed the iterates

z1 = f(20), 22 = f(21)s -y 2h41 = f(2k), - -

and investigated properties of the sequence {zx}. Their findings did not receive a great deal
of attention, largely because computer graphics were not available at that time. With the
recent proliferation of computers, it is not surprising that these investigations were revived in
the 1980s. Detailed studies of Newton’s method and the more general topic of iteration were
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undertaken by a host of mathematicians including Curry, Devaney, Douady, Garnett, Hubbard,
Mandelbrot, Milnor, and Sullivan. We now turn our attention to some of their results by
focusing on the iterations produced by quadratics of the form f.(z) = z? + ¢. You will be
surprised at the startling pictures that graphical iterates of such a simple function produce.

Example 4.9. For f.(z) = 22 + ¢, analyze all possible iterations when ¢ = 0, that is, for the
function fy defined by fo(z) = 22 + 0.

Solution:

We leave as an exercise the claim that, if |zp| < 1, the sequence will converge to 0; if |zo| > 1,
the sequence will be unbounded; and if |z9| = 1, the sequence will either oscillate around the
unit circle or converge to 1.

For the function f., defined by f.(z) = 22+ ¢, and an initial seed zg, the set of iterates given
by z1 = fe(20), 22 = fe(21), .. .1s also called the orbit of zy generated by f.. We let K. denote
the set of points with a bounded orbit for f.. Example 4.9 shows that K is the closed unit
disk D1(0). The boundary of K, is known as the Julia set for the function f.. Thus the Julia
set for fo is the unit circle C1(0). It turns out that K. is a nice simple set only when ¢ = 0 or
¢ = —2; otherwise, K, is fractal. Figure 4.5a shows K_1 95. Its reflective nature has reminded
some of St. Mark’s square in Venice when flooding occurs. The variation in colors in that figure
indicate the length of time it takes for points to become “sufficiently unbounded” according
to the following algorithm, which uses the same notation as our algorithm for iterations via
Newton’s method:

1. Compute f¢(z;;). Continue computing successive iterates of this initial point until the
absolute value of one of the iterations exceeds a certain bound (say, L), or until the
number of iterations has exceeded a preassigned maximum.

2. If Step 1 leaves us with an iteration whose absolute value exceeds L , we color the entire
rectangle R;; with a color indicating the number of iterations needed before this value
was attained (the more iterations required, the darker the color). Otherwise, we assume
that the orbit of the initial point z;; do not diverge to infinity, and we color the entire
rectangle black.

Note, again, that this algorithm doesn’t prove anything. It merely guides the direction of
our efforts to do rigorous mathematics.

Figure 4.5b shows the Julia set for the function f., where ¢ = —0.11—0.67¢. The boundary of
this set is different from the boundaries of the other sets we have seen, in that it is disconnected.
Julia and Fatou independently discovered a simple criterion that can be used to tell when the
Julia set for f. is connected or disconnected. We state their result, but omit the proof, as it is
beyond the scope of this text.

Theorem 4.9. The boundary of K. is connected if and only if 0 € K.. In other words, the
Julia set for f. is connected if and only if the orbit of 0 is bounded.

Example 4.10. Show that the Julia set for f; is connected.

Solution:

We apply Theorem 4.9 and compute the orbit of 0 for f;(z) = 22 + 4. We have f;(0) = i,
fiti) = =141, fi(—1+1i) = —i, and f;(—i) = —1 4 4. Thus the orbit of 0 are the sequence
{0, =1+, —i, =144, —i, —1+1i, —i,...}, which is clearly a bounded sequence. Thus, by
Theorem 4.9, the Julia set for f; is connected.
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Figure 4.5: Results of iterating f.(z) for two different values of ¢

In 1980, the Polish-born mathematician Benoit Mandelbrot used computer graphics to study
the set

M = {c : the Julia set for f. is connected}
= {c : the orbit of 0 determined by f. is bounded}.

The set M is known as the Mandelbrot set. Figure 4.6 shows its intricate nature.

Figure 4.6: The Mandelbrot set

Technically, the Mandelbrot set is not fractal because it is not self-similar (although it may
look that way). However, it is infinitely complex. Figure 4.7a shows a zoom over the upper
portion of the set shown in Figure 4.6. Likewise, Figure 4.7b zooms in on the upper portion
of Figure 4.7a. In Figure 4.7b you can see the emergence of another structure very similar to
the Mandelbrot set that we began with. Although it isn’t an exact replica, if you zoomed in
on this set at almost any spot, you would eventually see yet another “Mandelbrot clone” and
so on ad infinitum! In the remainder of this section we look at some of the properties of this
amazing set.
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(a) A zoom of the upper-portion of Figure 4.6 (b) A zoom of the upper-portion of Figure 4.7a

Figure 4.7: Zooming in on the Mandelbrot set

Example 4.11. Show that {c: |c| < 1} C M.

Solution:
Let {a,}22 be the orbit of 0 generated by f.(z) = 2% + ¢, where |¢| < . Then

ag =0,
a1 = felag) = ad +c=c,
as = fo(ay) = a? + ¢, and in general,
ani1 = folan) = d® +c.
We show that {a,} is bounded, and, in particular, we show that |a,| < % for all n by mathe-

matical induction. Clearly |a,| < 1 if n =0 or 1. We assume that |a,| < 3 for some value of
n > 1 (our goal is to show |an41| < 3). Now,

|ant1| = laj, +¢|
<la2| + |¢| (by the triangle inequality)
1

1
< 4-=

1
S1t173 (by our induction assumption and the fact that |c| <

=

In the exercises, we ask you to show that, if |¢| > 2, then ¢ ¢ M. Thus the Mandelbrot set
depicted in Figure 4.6 contains the disk D 1 (0) and is contained in the disk D3(0).

We can use other methods to determine which points belong to M. To do so, we need some
additional vocabulary.

Definition 4.9 (Fixed Point). The point zg is a fized point for the function f if f(z0) = 2o.
Definition 4.10 (Attracting Point). The point zy is an attracting point for the function f
if 1f'(20)] < 1.

Theorem 4.10 explains the significance of these terms.

Theorem 4.10. Suppose that zy is an attracting fized point for the function f. Then there is
a disk D,(zo) about zy such that the iterates of all the points in D} (zp) are drawn toward z
in the sense that, if z € D}(z0), then |f(2) — 20| < |z — 20|. In fact, if zi is the kth iterate of
z € D} (z0), then klggo 2K = 20.
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Proof. Because zp is an attracting point for f, we know that |f’(20)] < 1. And because f is
differentiable at zp, we know that for any € > 0 there exists some r > 0 such that if z € D}(zp),

then |M — f(20)| <e. I weset e =1—]f"(20)|, then we have for all z in D}(zy) that

f(z) = f(20) f(2) = f(20)

zZ— 2 zZ— 29

— f(20)] < 1—[f"(20)l,

—f (o) < ‘

which gives ‘%ﬁzo)‘ < 1. Thus |f(z) — f(20)] < |z — 20|- Because z is a fixed point for f,
this last inequality implies that |f(2z) — 20| < |z — 20|, which is the first part of our theorem.

The proof that lim z; = zg is left as an exercise. ]
k—o0

In 1905, Fatou showed that, if the function f. defined by f.(z) = 22 + ¢ has attracting fixed
points, then the orbit of 0 determined by f. must converge to one of them. Because a convergent
sequence is bounded, this condition implies that ¢ must belong to M. In the exercises we ask
you to show that the main cardioid-shaped body of M in Figure 4.6 is composed of those
points ¢ for which f. has attracting fixed points. You will find Theorem 4.11 to be a useful
characterization of these points.

Theorem 4.11. The function f.(z) = z? + ¢ has attracting fived points iff |1 + /1 —4c| < 1
or |1 —+/1—4c| < 1, where the square root designates the principal square root function.

Proof. The point 2 is a fixed point for f. iff f.(20) = 20. In other words, iff 232 — 29 + ¢ = 0.
By Theorem 1.5, the solutions to this equation are

_1—|—\/1—4c 1—-+v1—4c

or zpg=——,

=0 2 2

where again the square root designates the principal square root function. Now, zy is an
attracting point iff |f/(20)| = |220] < 1. Combining this result with the solutions for z gives
our desired result. O

Definition 4.11 (n-cycle). An n-cycle for a function f is a set

{20, 21, -, 201}
of n complex numbers such that z;, = f(zix—1), for 1 <k <n—1 and f(z,—1) = 20.

Definition 4.12 (Attracting). An n-cycle {zo, z1,..., zn—1} for a function f is said to be
attracting if |g,'(20)| < 1, where gy, is the composition of f with itself n times. For example,

if n =2, then ga2(z) = (fof)(z) = f(f(z))

Example 4.12. Example 4.10 shows that {—1 + i, —i} is a 2-cycle for the function f;. It is
not an attracting 2-cycle because go(z) = 2* + 2i2%2 +i — 1 and go'(2) = 423 + 4iz. Hence
g2 (=1 +4)| = |4 4 4i], s0 |g2"(—1 +14)| > 1.

In the exercises, we ask you to show that, if {20, 21,...,2,-1} is an attracting n-cycle for
a function f, then not only does zy satisfy |g,'(20)] < 1, but also that |g,’(zx)| < 1, for
k=1,2,....,n—1.

One can prove that the large disk to the left of the cardioid in Figure 4.6 consists of those
points ¢ for which f.(z) has a 2-cycle. The large disks above and below the main cardioid disk
are the points ¢ for which f.(z) has a 3-cycle.
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Continuing with this scheme, we see that the idea of n-cycles explains the appearance of the
“buds” that you see on Figure 4.6 . It does not, however, begin to do justice to the enormous
complexity of the entire set. Even Figures 4.7a and 4.7b are mere glimpses into its awesome
beauty.

Exercises for Section 4.2 (Selected answers or hints are on page 437.)

1. Consider the function f(z) = 2% + 1, where

e )

(a) Show that, if Im(zp) > 0, the sequence {zj} formed by successive iterations of zy via
N(z) lies entirely within the upper half-plane.

(b) Show that a similar result holds if Im(zg) < 0.
(c) Use induction to show that, if all the terms of the sequence {z;} are defined, then
the sequence {z} is real, provided z is real.

(d) Discuss whether {zx} converges to i if Im(zp) > 0 and to —i if Im(zp) < 0.

2. Formulate and solve problems analogous to those in Exercise 1 for the function f(z) =
2
24— 1.

3. Prove that Newton’s method always works for polynomials having degree 1 (functions of
the form f(z) = az+b, where a # 0). How many iterations are necessary before Newton’s

method produces the solution z = —% to f(z) =07

4. Consider the function fo(z) = 22 and an initial point zy. Let {2} be the sequence of
iterates of zp generated by fo. That is, z1 = fo(20), 22 = fo(z1), and so on.

(a) Show that, if |z9| < 1, the sequence {zx} converges to 0.

(b) Show that, if |z9| > 1, the sequence {zx} is unbounded.

(c) Show that, if |z9| = 1, the sequence {zj} either converges to 1 or oscillates around
the unit circle. Give a simple criterion that you can apply to zg that will reveal
which of these two paths {z} takes.

5. Show that the Julia set for f_o(2) is connected.
6. Determine the precise structure of the set K_s.

7. Prove that if a complex number ¢ is in the Mandelbrot set, then its conjugate ¢ is also in
the Mandelbrot set. Thus, the Mandelbrot set is symmetric about the x axis. Hint: Use
mathematical induction.

8. Show that, if ¢ is any real number greater than i, then c is not in the Mandelbrot set.
Note: Combining this condition with Example 4.11 shows that the cusp in the cardioid
section of the Mandelbrot set occurs precisely at ¢ = i.

9. Find a value for ¢ that is in the Mandelbrot set such that its negative, —c¢, is not in the
Mandelbrot set.
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10. Show that the points ¢ that solve the inequalities of Theorem 4.11 form a cardioid. This
cardioid is the main body of the Mandelbrot set shown in Figure 4.6. Hint: It may be
helpful to write the inequalities of Theorem 4.11 as

L,
2 \V1 ¢

1 1
——4/-—c

<1
2 4 2

< = or
2

11. Use Theorem 4.11 and the paragraph immediately before it to show that the point —%\/?:i
belongs to the Mandelbrot set.

12. Suppose that {zg, z1} is a 2-cycle for f.

(a) Show that, if zp is attracting for go(z), then so is the point z;. Hint: Differentiate
92(2) = f(f(2)) using the chain rule, and show that g2'(z0) = g2'(21).

(b) Generalize part (a) to n-cycles.

13. Prove that lim z; = 2z in Theorem 4.10.
k—00

4.3 Geometric Series and Convergence Theorems

o0

We begin this section by presenting a series of the form »_ 2", which is called a geometric
n=0

series and is one of the most important series in mathematics.

o0
Theorem 4.12 (Geometric series). If |z| < 1 the series Y. 2™ converges to f(z) = 1~ That

1-2
n=0
is, if |z| < 1, then
S 1
Zzn:1+z+22+...+zk+...:1 . (411)
n=0 - F
If |z| > 1 the series diverges.
Proof. Suppose that |z| < 1. By Definition 4.4, we must show lim S, = ﬁlzv where
n—oo
Sp=1+z+224 271 (4.12)
Multiplying both sides of Equation (4.12) by z gives
2Sp=z2+ 22+ 234 24 (4.13)
Subtracting Equation (4.13) from Equation (4.12) yields
(1-2)S,=1-2"
so that . "
z
Sy = - . 4.14
" l-z 1-2z ( )

Since |z| < 1, lim 2" = 0. (Can you prove this assertion? We ask you to do so in the exercises!)
n—oo

1
1—2z"

Hence lim S,, =
n—oo

Now suppose |z| > 1. Clearly, lim |2"| # 0, so lim 2" # 0 (see Exercise 17, Section 4.1).

oo
Thus, by the contrapositive of Theorem 4.5, > 2™ must diverge. O
n=0
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oo
Corollary 4.2. If |z| > 1 the series Y z~™ converges to f(z) = =5 That is, if |z| > 1 then

n=1

> 1

E = T = ,  or equivalently,
ot z—1
o0
1
_E Z—'fl:_Z—l_Z—Q_._'_z—n__“: .
n=1 -z

If |z| <1, the series diverges.

Proof. If we let 1 take the role of 2 in Equation (4.11), we get

oo n
1 1 1
Z() - w PYen
z 1-—= z
n=0 z
Multiplying both sides of this equation by % gives
I (1\" 1 1
- -] = if |—-|<1
2 Z (z> -1 Tz
n=0
which, by Equation (4.10), is the same as
00 n+1
1 1 1
> () = if =<1
z z—1 z
n=0
oo
But this expression is equivalent to saying that Y (2)® = L+, if 1 < |z|, which is what the
n=1
corollary claims.
It is left as an exercise to show that the series diverges if |z| < 1. O

Corollary 4.3. If z # 1 then for all n,

n

1
T
1-=2 1-2
Proof. This result follows immediately from Equation (4.14). O
X (1)
Example 4.13. Show that Eo % =1—i.
n=
Solution:
If we set z = 152, then |z| = § < 1. By Theorem 4.12, the sum is
1 2 2 .
- = - = -=1—n1.
1-= 2140 1+
S .
Example 4.14. Evaluate }_ (5)".
n=3
Solution:
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We can put this expression in the form of a geometric series:

o] i n o] i 3 i n—3
>(:)-20) ()
n=3 n=3
i 3 oo i n—3
= (2> nz:; <2> (by Equation (4.10) in Theorem 4.5)
i 3 oo i n
= <2> Z;) <2> (by reindexing)
N3 .
=(z ! (by Theorem 4.12 b oLy
=13 -1 y Theorem 4.12 because || = 5
1 1

=— - — (by standard simplification procedures).

Remark 4.3. The equalities given in Example 4.1} collectively illustrate an important point
with regard to evaluating a geometric series whose beginning index is other than zero. The

o0
value of Y 2" equals . If we think of z as the “ratio” by which any term of the series
n=r

18 multz’pligd to gemerate successive terms, we note that the sum of a geometric series equals
ﬁ{i#, provided |ratio| < 1.

The geometric series is used in the proof of Theorem 4.12, which is known as the ratio
test. It is one of the most commonly used tests for determining the convergence or divergence
of series. The proof is similar to the one used for real series, and we leave it for you to do.

o0
Theorem 4.13 (d’Alembert’s ratio test). If > (, is a complex series with the property that
n=0

tim ol g

oo |Gl

then the series is absolutely convergent if L < 1 and divergent if L > 1.

00 N\
Example 4.15. Show that (1%) converges.
n=0

Solution:
Using the ratio test, we find that

n—00 |(1 — z)"/n!| N—00 (n—i— 1)! n—oo n + 1
2
= lim V2 =0=0L.
n—oon + 1

Because L < 1, the series converges.

) \n
Example 4.16. Show that the series (Z;) converges for all values of z in the disk |z—i| < 2
n=0

and diverges if |z —i| > 2.

Solution:
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Using the ratio test, we see that

(R i B EE BN e

L.

If |z — 4| < 2, then L < 1, and the series converges. If |z —i| > 2, then L > 1, and the series
diverges.

Our next result, known as the root test, is slightly more powerful than the ratio test.
Before we present this test, we need to discuss a rather sophisticated idea used with it—the
limit supremum.

Definition 4.13 (Limit Supremum). Let {t,} be a sequence of positive real numbers. The
limit supremum of the sequence (denoted lim sup t,,) is the smallest real number L having
n—oo

the property that for any € > 0, there are at most finitely many terms in the sequence that are

larger than L + e. If there is no such number L, then lim sup t, = oco.
n— o0

Example 4.17. The limit supremum of the sequence

{tn} = {4.1, 5.1, 4.01, 5.01, 4.001, 5.001,...} is  lim sup ¢, = 5,

n—oo

because if we set L = 5, then for any € > 0, there are only finitely many terms in the sequence
larger than L 4+ ¢ = 5 4 ¢. Additionally, if L is smaller than 5, then by setting ¢ = 5 — L, we
can find infinitely many terms in the sequence larger than L + ¢ (because L + ¢ = 5).

Example 4.18. The limit supremum of the sequence

{t,}=11,2,3,1,2,31,2,3,1,2,3,...} is lim supt, =3,

n—o0

because if we set L = 3, then for any € > 0, there are only finitely many terms (actually, there

are none) in the sequence larger than L +¢ = 3+¢. Additionally, if L is smaller than 3, then by

setting € = % we can find infinitely many terms in the sequence larger than L + ¢ (because

L + ¢ < 3), as the following calculation shows:

= = 3.

3—-L 34L 3 L 3 3
L =L+ —=— = — 4 =
+e + 3 9 2-|-2<2-1—2

Example 4.19. The limit supremum of the Fibonacci sequence

{tn} ={1, 1, 2, 3, 5, 8, 13, 21, 34,...} is lim sup t, = co.

n—oo

(The Fibonacci sequence satisfies the relation t,, = t,,—1 + t,,—2 for n > 2.)

The limit supremum is a powerful idea because the limit supremum of a sequence always
exists, which is not true for the ordinary limit. However, Example 4.20 illustrates the fact that,
if the limit of a sequence does exist, then it will be the same as the limit supremum.

Example 4.20. The sequence

1
()= 1+ 4
={2, 1.5, 1.33, 1.25, 1.2, ...} has ILm sup t, = 1.

We leave verification of this as an exercise.
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Theorem 4.14 (Root test). Suppose the series E Cn has hm sup |Cn|" = L. Then the series

is absolutely convergent if L < 1 and divergent sz > 1.

Proof. Suppose first that L < 1. We can select a number r such that L <r< 1. By definition
of the limit supremum, only finitely many terms in the sequence {|Cn|n} exceed 7 , so there

exists a positive integer N such that for all n > N we have |Cn|" < r. That is, |(,| < r™ for
[e.°]
all n > N. For r < 1, Theorem 4.12 implies that > 7" converges. But then Theorem 4.8

n=N+1
o0 o0
implies that > || converges, and hence so does ) |(,| . Corollary 4.1 then guarantees
n=N+1 n=0
(o]
that > (, converges.

n=0
Now suppose that L > 1. We can select a number r such that 1 < r < L. Again, by
definition of the limit supremum we conclude that ]Cn]n > r for infinitely many n. But this
condition means that |(,| > r™ for infinitely many n, and as r > 1, this implies that ¢, does
[o.¢]

not converge to 0. By Theorem 4.5, > (, does not converge. O
n=0

Note that, in applying either Theorem 4.13 or 4.14, if L = 1 the convergence or divergence
of the series is unknown, and further analysis is required to determine the true state of affairs.

Exercises for Section 4.3 (Selected answers or hints are on page 438.)

1. Evaluate

n=0

2. Show that Z 2,; )% converges for all values of z in the disk Dy(—i) ={z: |z + 1| < 2}
n=0
and diverges if ]z +i| > 2.

n=0
4. Use the ratio test to show that the following series converge.

[&.°]

(a)

—~

—
vl

<.
~—
S

N
I
o

=
8
3T
3
1=

3
Il
—

—
S
M2
=
3t
=

i
I

(14i)%n
(2n+1)!"

2
o
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5. Use the ratio test to find a disk in which the following series converge.

(e8]

(a) Y. (140)m=".

n=0

X (2—3—4i)"
(d) ¥ A

n=0

6. Establish the claim in the proof of Theorem 4.12 that, if |z| < 1, then lim 2" = 0.
n—roo
7. In the geometric series, show that if |z| > 1, then li_>m |Sn| = 0.
n o
8. Prove that the series in Corollary 4.2 diverges if |z] < 1.

9. Prove Theorem 4.13.

10. Give a rigorous argument to show that li_>m sup t, = 1 in Example 4.20.
n—oo

11. For |z| < 1,1et f(2) = 3 2" = 2422424+ 422" +.... Show that f(z) = z+ f(22).
n=0

12. This exercise makes interesting use of the geometric series.

(a) Use the formula for geometric series with z = re??, where 7 < 1, to show that

i n i n ing 1 —mrcosf+irsinf
2= rte" = .
—~ s 1472 —2rcosf

(b) Use part (a) to obtain

> 1—17rcos@

" 0 = d
;T cosn 1472 —2rcosf’ an
(o) .

rsin @

"sinnf = )

%T Y T 2 " 2r cos 6

4.4 Power Series Functions

oo

Suppose that we have a series > (,, where ¢, = ¢p(2z — @)”. If a and the collection of ¢, are
n=0

fixed complex numbers, we get different series by selecting different values for z. For example, if

00 . . 00
o =2and ¢, = 2 for all n, we get the series ). 2 (5—2)"if 2 =% and Y L (2+i)"if 2 = 4+4.
n=0 n=0
Note that, when oo = 0 and ¢,, = 1 for all n, we get the geometric series. The collection of points

o0 o0
for which the series > ¢,(z — )™ converges is the domain of a function f(z) = > ¢,(z — )",

= n=
which we call a power series function. Technically, this series is undefined if z = a and
n = 0 because 0° is undefined. We get around this difficulty by stipulating that the series
o0 o0
> en(z — )™ is really compact notation for ¢y + Y ¢,(z — «)™. In this section we present

n=0 n=1
some results that are useful in helping establish properties of functions defined by power series.
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o0

Theorem 4.15. Suppose that f(z) = > cn(z — @)™. Then the set of points z for which the

series converges is one of the following:

1. the single point z = «;

ii. the disk D,(a) = {z : |z — a| < p}, along with part (either none, some, or all) of the
circle Cp(a) = {z : |z — a| = p};

1i. the entire complex plane.

Proof. By Theorem 4.14, the series converges absolutely at those values of z for which lim sup |¢,,(z—
n—oQ

1
a)"|» < 1. This condition is the same as requiring

|z — af (Jl_}rgosup\cnﬁ) <1 (4.15)

There are three possibilities to consider for the value of lim sup |c,| = . If the limit supremum
n—oo
equals oo, Inequality (4.15) holds iff = = «, which is case (i). If 0 < lim sup\cnﬁ < 00,
n—o0

Inequality (4.15) holds iff |z — af < ———+ (z’.e., iff z € Dy(«v), where p = %)
nl;mw sup |en|n nl;mw sup |cn|n
which is case (7i). Finally, if the limit supremum equals 0, the left side of Inequality (4.15) will
be 0 for any value of z, which is case (iii). We are unable to say for sure what happens with
respect to convergence on Cy(a) = {z : |z — a| = p}. You will see in the exercises that there
are various possibilities. ]

Another way to phrase case (i7) of Theorem 4.15 is to say that the power series f(z) =

o0

> en(z — a)™ converges if |z — a| < p and diverges if |z — a| > p. We call the number p the
n=0

radius of convergence of the power series (see Figure 4.8). For case (i) of Theorem 4.15, we
say that the radius of convergence is zero and that the radius of convergence is infinity for case

(4ii).

Divergence

Convergence __ What happens on the

a
% boundary may be unknown.

Figure 4.8: The radius of convergence of a power series

o0
Theorem 4.16. For the power series function f(z) = Y. ¢y(z — @)™ we can find p, its radius
n=0

of convergence, by any of the following methods:

i. Cauchy’s root test: p = %l\l (provided the limit exists).
im |cp|m
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L (this limit always exists).
lim sup [cn|m
n— oo

1. Cauchy-Hadamard formula: p =

iti. d’Alembert’s ratio test: p = (provided the limit exists).

1
lim |2t
n—o0 cn

We set p = oo if the limit equals 0 and p = 0 if the limit equals co.

Proof. If you examine carefully the proof of Theorem 4.15, you will see that we have already
proved (i) and (i7). They follow directly from Inequality (4.15) and the fact that the limit
supremum equals the limit whenever the limit exists. We can show (i) by using the ratio test.
We leave the details as an exercise. O

We now give an example illustrating each of these cases.

o0
Example 4.21. The series Y (£t2)"(z — 4)" has radius of convergence 3 by Cauchy’s root
n=0

3n+1
1
test because lim |c,|» = lim 22 = 1
n—>oo| n‘ n—oo M+l 3

oo
Example 4.22. The series Y c,2" = 4z + 5222 4+ 4323 + 5%2% + 452° + ... has radius

n=1
of convergence 1 by the Cauchy-Hadamard formula because {|cn|%} = {4,5,4,5,...}, so

lim sup |cn]% = 5.
n—oo

o0
Example 4.23. The series %z” has radius of convergence oo by the ratio test because

lim L‘ = lim
n—oo | (N+1)! n—00
We come now to the main result of this section.

(o)
Theorem 4.17. Suppose that the function f(z) = > en(z — &)™ has radius of convergence
n=0

p>0. Then
i. f is infinitely differentiable for all z € D,(a). In fact

i for all k, f®(z) = 3 nn — 1) (n — k + Dea(z — )"~ and
n=k

1. cp = f(k,i!(a), where f*) denotes the kth derivative of f. (When k =0, f*) denotes the
function f itself so that fO)(z) = f(z) for all z.)

Proof. Remarkably, the entire proof hinges on verifying (i:) for the simple case when k£ = 1.
The cases in (4i) for k > 2 follow by induction. For instance, we get the case when k = 2 by

oo
applying the result for k = 1 to the series f/(2) = . ncp(z — )" L. Also, (i) is an automatic
n=1

consequence of (i), because (ii ) gives a formula for computing derivatives of all orders in
addition to assuring us of their existence. Finally, (i) follows by setting z = « in (i7), as all
the terms drop out except when n = k, giving us f®)(a) = k(k —1)--- (k — k + 1)cx. Solving
for ¢; gives the desired result.
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Verifying (i) when k = 1, however, is no simple task. We begin by defining the following:
9(z) =Y nea(z — )",
n=1

J
Si(z) = Z en(z —a)",
n=0

Rj(z) = Z en(z —a)™.

n=j+1

Here Sj(z) is simply the (j 4+ 1)st partial sum of the series f(z), and R;(z) is the sum of the
remaining terms of that series. We leave as an exercise to show that the radius of convergence for
g(z) is p, the same as that of f(z). For a fixed zp € D,(«), we must prove that f’(z9) = g(z0);

that is, we must prove that lim,_,,, &)1z 9(z0). We do so by showing that for all £ > 0

zZ—20

there exists § > 0 such that, if z € D,(«) with 0 < |z — 29| < J, then ]w —g(20)] < e.

20

Let z9 € D,(a) and € > 0 be given. Choose r < p so that zyp € D,(c). We choose ¢ to
be small enough so that Ds(z9) C D,(a) C Dy(c) (see Figure 4.9) and also small enough to
satisfy an additional restriction, which we shall specify in a moment.

7 ~

// \\

// 20 \\
5y

1
[ o T The disk Ds(z)
\
\\ o/ |- y. The disk D, ()

RV o T~ The disk D, (@

NS———

Figure 4.9: Choosing ¢ to prove that f'(z9) = g(20)

Because f(z) = Sj(z) + Rj(z), simplifying the right side of the following equation reveals
that for all j,

ICESIOR I CEL T

zZ— 29 zZ— 2

-5 '(Zo)}

Rj(z) - Rj(Zo)]

+[85"(20) — 9(20)] + [ p— (4.16)

where S;’(z9) is the derivative of the function S; evaluated at zp. Equation (4.16) has the
general form A = B + C' 4+ D. By the triangle inequality,

Al =B +C+ D] < |B|+|C[+[D],

so our proof will be complete if we can show that for a small enough value of 9, each of the
expressions |B|, |C|, and |D| is less than §.

126



Calculation for |D|:

Rj(z)_Rj(ZO) _ 1 = e llz —a) — (20 — o)™
R R 3 alle=ar~a-ar
<Y el LBzl
n=j+1

where the last inequality follows from Exercise 12, Section 4.1.

As an exercise, we ask you to show that

(z—a)" = (20— )"

< nr"L (4.17)
Z— 20
Assuming the validity of this inequality, we then get
R;(z) — R;j(20) - n-1
—_— | < . .
p— Z len |nr (4.18)
n=7+1

1

o0
Since r < p, the series Y |c,|nr™* converges (can you explain why?). Thus the tail part of

n—=
the series, which is the right side of Inequality (4.18), can certainly be made less than £ if we

3
choose j large enough—say, j > Nj.
Calculation for |C|:

J
Since S;’(z0) = Y nen(20 — a)" 7L, it is clear that limj_ S; (20) = g(20). Thus there is an
n=1

integer No such that if j > Ny, then [S;"(20) — g(20)| < §.

Calculation for |B|:
We define N = max{Ny, Na}. Because Sy(z) is a polynomial, Sy ’(z0) exists. This means we
can find 0 small enough that it complies with the restriction previously placed on it as well as
ensuring that
Sn(z) — Sn(20) Sw(z0)| < £
Z— 20 3

whenever z € D,(«), with 0 < |z — 29| < 6. Using this value of N for j in Equation (4.16),
together with our chosen ¢, yields conclusion (ii) and hence the entire theorem. O

o0
Example 4.24. Show that > (n +1)2" = = for all z € D;(0).

= (1—2)2
Solution:
[e.e]
We know from Theorem 4.12 that f(z) = ;& = 2" for all z € D1(0). If we set k =1 in
n=0
o0 o0
Theorem 4.17, part (ii), then f/(z) = (1_1z)2 = > nz" 1t =3 (n+1)z" for all z € Dy(0).
n=1 n=0

Example 4.25. The Bessel function of order zero is defined by

0 _1)n
ao =3

n=0

zZ\2n 1 22 24 28
(3) =1-Ztomwme
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and termwise differentiation shows that its derivative is

n=0

We leave as an exercise to show that the radius of convergence of these series is infinity. The
Bessel function Ji(z) of order 1 is known to satisfy the differential equation Ji(z) = —Jy'(2).

Exercises for Section 4.4 (Selected answers or hints are on page 439.)

1. Prove part (iiz) of Theorem 4.16.

(o] oo (o)

: : n 2" z"

2. Consider the series »_ 2", ) 25, and > =
n=0 n=1 n=1

Show that each series has radius of convergence 1.

(a)
(b)
()
(d) It turns out that the third series converges everywhere on C(0), except at the point
z = 1. This is not easy to prove. Give it a try.

Show that the first series converges nowhere on C;(0) = {z: |z| = 1}.

Show that the second series converges everywhere on C(0).

3. Find the radius of convergence of the following.

(0) 9z) = 2 (-1 555y
(b) h(z) = fon!zn.

(¢) f(2) = > (2 — Bu2ymon,

n=0
@ o) = S "
(©) h(z) = 3 (2= (-1))"

2"
(0) h(z) = 3 e
(i) g9(z) = 2022"
(G) g(2) = > 22 Hint: lim (1+ 1) =e.
n=0 n—o0

oo
4. Show that > (n+1)%2" = (11;'2)3. For what values of z is this valid?
n=0
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o0 (o]
5. Suppose that Y c,z" has radius of convergence R. Show that > c22" has radius of
n=0 n=0
convergence R?.

(o]
6. Does there exist a power series »_ ¢,2" that converges at z; = 4 — i and diverges at
n=0

zo = 2+ 3i?7 Why or why not?
7. Verify part (i) of Theorem 4.17 for all k£ by using mathematical induction.

8. This exercise establishes that the radius of convergence for g given in Theorem 4.17 is p,
the same as that of the function f.

(a) Explain why the radius of convergence for g is 1

_—.
lim sup |ncp |71
n— oo

(b) Show that li_>m sup]n[ﬁ = 1. Hint: The limsup equals the limit. Show that
n—oo

: logn __
e et = O

(c) Assuming that lim sup ]cn]ﬁ = lim sup ]cn\%, show that the conclusion for this
n—o0 n—oo
exercise follows.
(d) Verify the truth of the assumption made in part (c).
9. Here we establish the validity of Inequality 4.17 in the proof of Theorem 4.17.
(a) Show that

st —t"

s—t

— ’$n_1 + Sn—Zt + Sn_3t2 N Stn—Q + tn—l‘

e e e P I i o I SRR P ] N A
where s and t are arbitrary complex numbers, s # t.
(b) Explain why, in Inequality 4.17, |z — a| < r and |29 — a| < 7.
(c) Let s=2z—a and t = zp — « in part (a) to establish Inequality 4.17.
10. Show that the radius of convergence of the series for Jy(z) and Jy'(z) in Example 4.25 is
infinity.

11. Consider the series obtained by substituting for the complex number z the real number
x in the Maclaurin series for sin z. Where does this series converge?

(z=9)"
A—gnt1-

o0

12. Show that, for [z —i| < V2, I = Y
n=0

Hint: 1% = —1 1%[ ] Now use Theorem 4.12.

z - (I—i)—(z—i)  1— -2t

—_
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Chapter 5

Elementary Functions

Overview

How should complex-valued functions such as e?, log z, sin z, and the like, be defined? Clearly,
any responsible definition should satisfy the following criteria.

e The functions so defined must give the same values as the corresponding functions for
real variables when the number z is a real number.

e As much as possible, the properties of these new functions must correspond with their
real counterparts. For example, we would want e*1 722 = e¢*1e*2 to be valid regardless of
whether z were real or complex.

These requirements may seem like a tall order to fill. There is a procedure, however, that
offers promising results. It is to put the expansion of the real functions e*, sinz, and so on, as
power series in complex form. We use this strategy in this chapter.

5.1 The Complex Exponential Function

o0
Recall that the real exponential function can be represented by the power series e = )
n=0
Thus it is only natural to define the complex exponential e*, also written as exp(z),in the

1

f,x”.
n:

following way.

Definition 5.1 (The Complex Exponential).

o0

1
e® =exp(z) = Z Ez"

n=0

Clearly, this definition agrees with that of the real exponential function when z is a real number.
We now show that this complex exponential has two of the key properties associated with its
real counterpart and verify the identity e = cosf + isin@, which, back in Chapter 1 (see
Identity (1.32) of Section 1.4) we promised to establish.

Theorem 5.1. The function exp z is an entire function satisfying the following conditions.
i. exp '(z) = exp(z) = €* (using Leibniz notation we write d%ez =e?).
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ii. exp(z1 + 22) = exp(21) exp(z2) (i.e., €% = #1e?2),

ii. If 0 is a real number, then € = cos@ 4 isinf.

Proof. By the ratio test (check Example 4.23), the series in Definition 5.1 has an infinite radius
of convergence, so exp(z) is entire by Theorem 4.17, part (i).

Using Theorem 4.17, part (ii), we get

00 n 00 00 1
xp /(5 = 3 a1 = -3 = et
n=1 n=1 n=0

which gives us part (i) of Theorem 5.1
To prove part (ii), we let ( be an arbitrary complex number and define g(z) to be
9(z) = exp(z) exp(¢ — 2).
Using the product rule, chain rule, and part (i), we have
g'(2) = exp(z) exp( — 2) + exp(z)[—exp(¢ — 2)] = 0 for all .

According to Theorem 3.7, this result implies that the function g must be constant. Thus, for
all z, g(z) = g(0). Since exp(0) =1 (verify!), we deduce

9(z) = g(0) = exp(0) exp(¢ — 0) = exp(().
Hence, for all z,
g(2) = exp(z) exp(¢ — 2z) = exp(().
Setting z = z; and letting ( = z1 + 22, we get
exp(z1) exp(z1 + 22 — 2z1) = exp(z1 + 22),

which simplifies to our desired result.

To prove part (iii), we let 6 be a real number. By Definition 5.1,

[ 1 1
= Z [ " (i9)2n + (i9)2n+1:| (separating odd and even exponents)

2| (2n) 2n+1)!
= 1 -2\n pn2n 1 -0 2\n n2n
:nZO [(%)!(12) P G H]

02n+1

_Z 2n +nz:: n2n+1)

= COS 9 +isinf (by the series representations for the real-valued sine and cosine).
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Note that parts (ii) and (iii) of the Theorem 5.1 combine to verify DeMoivre’s formula, which
we introduced in Section 1.5—see Identity (1.40). Further, if z = = + iy, we have

exp(z) = €* = "W = % = ¢(cosy + isiny). (5.1)

Some texts start with Identity (5.1) as the definition for exp(z). In the exercises, we show
that this is a natural approach from the standpoint of differential equations.

The notation exp(z) is preferred over e* in some situations. For example, the number

exp($) = 1.22140275816017... is the value of exp(z) when z = 1 and equals the positive

fifth root of e = 2.71828182845904 . ... The notation eé, however, is ambiguous and might be
interpreted as any of the complex fifth roots of the number e that we discussed in Section 1.5:

P P
e5 =~ 1.22140275816017 <cos %k tisin 7:“) . for k=0,1,..., 4.

To prevent confusion, we often use exp(z) to denote the single-valued exponential function.

We now explore some additional properties of exp(z). From Identity 5.1 it follows that

eFrenT — o7 for all z, provided n is an integer, (5.2)
e’ =1, iff z = 42nm, where n is an integer, and (5.3
el = e*?, iff 29 = 21 + i2n7 for some integer n. (5.4)

For example, because Identity (5.1) involves the periodic functions cosy and siny, any two
points in the z plane that lie on the same vertical line with their imaginary parts differing by
an integral multiple of 27 are mapped onto the same point in the w plane. Thus the complex
exponential function is periodic with period 27i, which establishes Equation (5.2). We leave
the verification of Equations (5.3) and (5.4) as exercises.

Example 5.1. For any integer n, the points

5+. 1177_’_2
Zn=—+1i|—+2n
Ty 6 i

in the z plane (i.e., the xy plane) are mapped onto the single point

( 117 ,117r> V3 s

ot
ot

~ 3.02 — 1.75¢

N N — — _pd — g
COS 4+ 728In e ’L2€

6

wo = exp(za) =

in the w plane (i.e., the uv plane), as indicated in Figure 5.1.
y v

-2 -1 1 2

Figure 5.1: The points {z,} in the z plane and their image wy = exp(z,) in the w plane
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Let’s look at the range of the exponential function. If z = x + iy, we see from Identity
(5.1)—e* = e%e™ = e%(cosy + isiny)—that e* can never equal zero, as e® is never zero, and
the cosine and sine functions are never zero at the same point. Suppose, then, that w = e* # 0.
If we write w in its exponential form as w = pe'?, Identity (5.1) gives

pe'? = e%e'.

Using Identity (5.1), and Property (1.41) of Section 1.5, we get

p = €% and ¢ =y + 2nm, where n is an integer. Therefore, (5.5)
p = l|ef] =¢”, and 5.6)
¢ € arg(e®) = {Arg(e®) + 2nm : n is an integer}. (5.7)

Solving Equations (5.5) for z and y yields
r=Inp and y= ¢+ 2nm, (5.8)

where n is an integer. Thus for any complex number w # 0, there are infinitely many complex
numbers z = z + ¢y such that w = ¢*. From Equations (5.8), the numbers z are

z=x+1iy=Inp+i(¢+ 2nn)
= In|w| + i(Arg w + 2nm). (5.9)

where n is an integer. Hence

exp [|w] + i(Argw + 2n7)| = w.

In summary, the transformation w = e* maps the complex plane (infinitely often) onto the
set of nonzero complex numbers.

If we restrict the solutions to Equation (5.9) so that only the principal value of the argument,
—7m < Argw < 7, is used, the transformation w = e* = et maps the horizontal strip
{(z,y) : =7 < y < 7w} one-to-one and onto the range set S = {w : w # 0}. This strip is called
the fundamental period strip and is shown in Figure 5.2.

y v
\ 4
in
-------------------- -1-13
w = et
—_—
.................... ry
-« > X -« > U
-------------------- -
s =T Sy §
1 ¥ 2 53 \
The z plane. The w plane.

Figure 5.2: The fundamental period strip for the mapping w = exp(z)
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The horizontal line z = ¢t 4 ib, for —oo < t < oo in the z plane, is mapped onto the ray
w = ete® = e(cosb + isinb) that is inclined at an angle ¢ = b in the w plane. The vertical
segment z = a + 16, for —m < 6 < 7 in the z plane, is mapped onto the circle centered at the
origin with radius e® in the w plane. That is, w = e%e® = e?(cosf + isin ). The lines 71, 72,
and r3, are mapped to the rays 77, r5, and r3, respectively. Likewise, the segments s1, s2, and
s3 are mapped to the corresponding circles s7, s3, and s3.

Example 5.2. Consider a rectangle R = {(z,y) :a < x < band ¢ <y < d}, where —7 < ¢ <
d < m. Show that the transformation w = e* = €**% maps R onto a portion of an annular
region bounded by two rays.

Solution:

The image points in the w plane satisfy the following relationships involving the modulus and
argument of w:

% = ‘ea+iy| < |ea:+iy| < ‘eb+iy‘ — eb7 and

¢ = Arg(e®T¢) < Arg(e®t%) < Arg(e* ) < d.

which is a portion of the annulus {pe’® : e* < p < €’} in the w plane subtended by the rays
¢ = cand ¢ = d. In Figure 5.3, we show the image of the rectangle

7T ™
R:{(x,y):—lga;gland ——gyg—}.
4 3
v
A
w = exp(z)
Y _—
i
3
einl3
21 1 > x lVe ¢ > u
e—inl4
I
4y
\
The z plane. The w plane.

Figure 5.3: The image of R under the transformation w = exp(z)
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Exercises for Section 5.1 (Selected answers or hints are on page 439.)

1.

2.

10.

11.

Using Definition 5.1, explain why exp(0) = e° = 1.

The questions for this problem relate to Figure 5.2. The shaded portion in the w plane
indicates the image of the shaded portion in the z plane, with the lighter shading indicating
expansion of the area of corresponding regions.

(a) Why is there no shading inside the circle s7?

(b) Explain why the images of r1, 72, and r3 appear to make, respectively, angles of —%’r,
T, and ?{T” radians with the positive u axis.
(c) Precisely where should the images of the points +im be located?

. Verify Equations (5.3) and (5.4).

. Express e* in the form u + v for the following values of z.

(¢) —4+ bi.
d) -1+
(e) 14428
(f) §—2i

. Prove that |exp(z?)| < exp (|z]?) for all z. Where does equality hold?

Show that exp(z + im) = exp(z — im) holds for all z.

. Express exp(z?) and exp (1) in the Cartesian form u(z,y) + iv(z,y).

. Explain why

(a) exp(z) = exp z holds for all z.

(b) exp(Z) is nowhere analytic.
Show that |e™%| < 1 iff Re(z) > 0.

Verify that

ef—1 _ 1

(a) lim

z—0

(b) lim & = —1.
Z—T

135



12. Show that f(z) = ze® is analytic for all z by showing that its real and imaginary parts
satisfy the Cauchy-Riemann sufficient conditions for differentiability.
13. Find the derivatives of the following.
(a) €'
(b) ztexp(2?).
) elatib)z
) exp(2).
14. Let n be a positive integer. Show that

(a) (expz)™ = exp(nz).
(b) (explz)" = exp(—nz).

m .
15. Show that » e converges for Im(z) > 0.
n=0
16. Generalize Example 5.1, where the condition —7 < ¢ < d < 7 is replaced by d — ¢ < 27.
Illustrate what this means.

17. Use the fact that exp(z?) is analytic to show that e =¥ sin 2xy is a harmonic function.
18. Show the following concerning the exponential map.

(a) The image of the line {(z,y) : x =t, y = 2w + t}, where —oo < t < 00 is a spiral.

(b) The image of the first quadrant{(z,y) : x > 0, y > 0} is the region {w : |w| > 1}.

(c) If a is a real constant, the horizontal strip {(z,y) : @ < y < a + 27} is mapped
one-to-one and onto the nonzero complex numbers.

(d) The image of the vertical line segment {(x,y) : © = 2, y = t}, where § <t < %’r is
half a circle.

(e) The image of the horizontal ray {(z,y) : z >0, y = §} is a ray.

19. Explain how the complex function e® and the real function e* are different. How are they
similar?

20. Many texts give an alternative definition for exp(z), starting with Identity (5.1) as the
definition for f(z) = exp(z). Recall that this identity states that exp(z) = exp(x + iy) =
e®(cosy + isiny). This exercise shows such a definition is a natural approach in terms
of differential equations. We start by requiring f(z) to be the solution to an initial-value
problem satisfying three conditions: (1) f is entire, (2) f'(z) = f(z) for all z, and (3)
f(0) = 1. Suppose that f(z) = f(x + iy) = u(x,y) + iv(z,y) satisfies conditions (1), (2),
and (3).

(a) Use the result f'(2) = uy(z,y) + ivy(z,y) and the requirement f’(z) = f(z) from
condition (2) to show that u,(z,y) — u(x,y) =0, for all z = (x,y).

(b) Show that the result in part (a) implies that %[u(m,y)e‘x] = 0. This means

u(zx,y)e " is constant with respect to x, so u(x,y)e~* = p(y), where p(y) is a function
of y alone.

(c¢) Using a similar procedure for v(z,y), show we wind up getting a pair of solutions
u(z,y) = p(y)e*, and v(z,y) = q(y)e* where p(y) and ¢(y) are functions of y alone.
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(d) Now use the Cauchy-Riemann equations to conclude from part (c) that p(y) = ¢'(y)
and p'(y) = —q(y)-

(e) Use part (d) to show that p”(y) + p(y) = 0 and ¢”(y) + q(y) = 0.

(f) Identify the general solutions to part (e). Then, given the initial conditions
£(0) = £(0 + 0i) = u(0,0) + #(0,0) = 1 + 0,
find the particular solutions and conclude that Identity (5.1) follows.

5.2 The Complex Logarithm

In Section 5.1, we showed that, if w is a nonzero complex number, then the equation w = exp z
has infinitely many solutions. Because the function exp(z) is a many-to-one function, its inverse
(the logarithm) is necessarily multivalued.

Definition 5.2 (Multivalued logarithm). For z # 0, we define the multivalued function log as
the inverse of the exponential function; that is,

log(z) =w iff z=exp(w). (5.10)

If we go through the same steps as we did in Equations (5.8) and (5.9), we find that, for
any complex number z # 0, the solutions w to Equation (5.10) take the form

w=1In|z| +1i0, for z#0. (5.11)

where 6 € arg(z) and In |z| denotes the natural logarithm of the positive number |z|. Because
arg(z) is the set arg(z) = {Arg(z) + 2n7 : n is an integer}, we can express the set of values
comprising log(z) as

log(z) = {In|z| + i(Arg(z) + 2n7) : n is an integer} (5.12)
= In |z| +iarg(z), (5.13)

where it is understood that Identity (5.13) refers to the same set of numbers per Identity (5.12).

Recall that Arg is defined so that for z # 0, —m < Arg(z) < m. We call any one of the values
given in Identities (5.12) or (5.13) a logarithm of z. Note that the different values of log(z) all
have the same real part and that their imaginary parts differ by the amount 2nmw, where n is
an integer. When n = 0, we have a special situation.

Definition 5.3 (Principal value of the logarithm). For z # 0, we define Log, the principal
value of the logarithm, by
Log(z) = In |z| 4+ iArg(z). (5.14)

The domain for the function Log is the set of all nonzero complex numbers in the z plane,
and its range is the horizontal strip {w : —7 < Im(w) < 7} in the w plane. We stress again
that Log is a single-valued function and corresponds to setting n = 0 in Equation (5.12). As we
demonstrated in Chapter 2, the function Arg is discontinuous at each point along the negative x
axis; hence so is the function Log. In fact, because any branch of the multivalued function arg is
discontinuous along some ray, a corresponding branch of the logarithm will have a discontinuity
along that same ray.
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Example 5.3. Find the values of log(1 + ) and log(i).

Solution:

By standard computations, we have

log(1+1i) = {ln |1+ 4| +i(Arg(l +14) + 2nm) : nis an integer}

{ln\[—i— i ( + 2n7r> :n is an integer} , and

log(1) In|i| + i(Arg(i) + 2n7) : n is an integer}

{ ( + 2n7r) :n is an integer} .

The principal values are

In2
Log(l1+1) = ln\@—i—z’% = HT + z% and
T
Log(i) = i~.
og(1) i5

We now investigate some of the properties of log and Log. From Equations (5.10), (5.12),
and (5.14), it follows that

exp(Log z) =z forall z#0, and (5.15)

Log(expz) =z, provided — 7 <Im(z)<m, (5.16)
and that the mapping w = Log(z) is one-to-one from domain D = {z : |z| > 0} in the z plane
onto the horizontal strip {w : —7 < Im(w) < 7} in the w plane.

The following example illustrates that, even though Log is not continuous along the negative
real axis, it is still defined there.

Example 5.4. Identity (5.14) reveals that

Log(—e) =In| — e| + iArg(—e) = 1 +im, and
Log(—1) =1In| — 1| + iArg(—1)

ITT.

When z = x + 40, where z is a positive real number, the principal value of the complex
logarithm of z is
Log(z +i0) = Inz + iArg(z) = lnx 4+ {0 = Inz.

where x > 0. Hence Log is an extension of the real function In to the complex case. Are there
other similarities? Let’s use complex function theory to find the derivative of Log. When we
use polar coordinates for z = re? # 0, Equation (5.14) becomes

Log(z) = Inr + iArg(z)
=Inr+i, for r>0 and —nw<O<7
=U(r,0) +iV(r,0),
where U(r,0) = Inr and V(r,0) = 0. Because Arg(z) is discontinuous only at points in its

domain that lie on the negative real axis, U and V have continuous partials for any point (r, 0)
in their domain, provided re? is not on the negative real axis, that is, provided —w < 6 < 7.

138



(Note the strict inequality for 6 here.) In addition, the polar form of the Cauchy-Riemann
equations holds in this region (see Equation (3.22) of Section 3.2), since

1 1 1
Ur(r,0) = ;V@(n ) = - and Vi(r,0) = —;Ug(?“, 8) = 0.

Using Theorem 3.5 of Section 3.2, we see that

d

4 (1 1
—Log(z) = e (U, +iV,) = e <r + 0i> =

re? 2

dz

provided > 0 and —7w < # < w. Thus the principal branch of the complex logarithm has the
derivative we would expect. Other properties of the logarithm carry over, but only in specified
regions of the complex plane.

Example 5.5. Show that the identity Log(z122) = Log(z1) + Log(z2) is not always valid.
Solution:
Let z; = —v/3 4 i and 20 = —1 +iv/3. Then
Log(z122) = Log(—41)
—nd+i (—%) . but

) 2
Log(z1) + Log(z2) =In2 + zg +1In2+ z%

3T
=In4+i—.
n —1—22

Our next result explains why Log(z122) = Log(z1) + Log(z2) didn’t hold for the particular
numbers we chose.

Theorem 5.2. Log(z122) = Log(z1) + Log(22) iff —m < Arg(z1)+ Arg(ze) <.

Proof. Suppose first that —m < Arg(z1) + Arg(z2) < 7. By definition, Log(z122) = In |z122| +
iArg(z122) = In|z1| 4+ In |22| + iArg(z122). Because —m < Arg(z1) + Arg(z2) < m, it follows that
Arg(z122) = Arg(z1) + Arg(z2) (explain!), and so

Log(z122) = In 21| + In |z2| + tArg(z1) + iArg(z2) = Log(z1) + Log(z2).

The “only if” part is left as an exercise. O

As Example 5.5 and Theorem 5.2 illustrate, properties of the complex logarithm don’t carry
over when arguments of products combine in such a way that they drop down to —m or rise
above w. This is because of the restrictions placed on the domain of the function Arg. From the
set of numbers associated with the multivalued logarithm, however, we can formulate properties
that look exactly the same as those corresponding with the real logarithm.

Theorem 5.3. Let z1 and z3 be nonzero complex numbers. The multivalued function log obeys
the familiar properties of logarithms:

log(z122) = log(z1) + log(22), (5.17)
log <2) = log(z1) —log(z2), and (5.18)

log (i) — _log(2). (5.19)
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Proof. Identity (5.17) is easy to establish: Using Identity (1.38) in Section 1.4 concerning the
argument of a product (and keeping in mind we are dealing with sets of numbers), we write

log(z122) = In |21 22| 4 i arg(z122)
=In|z1| + In|z2| + i arg(z1) + iarg(z2)
= [In|z1| 4+ targ(z1)] 4+ [In|ze| + iarg(z2)] = log(z1) + log(z2).

Identities (5.18) and (5.19) are left as exercises. O

We can construct many different branches of the multivalued logarithm function that are
continuous and differentiable except at points along any preassigned ray {re!® : r > 0}. If
we let a denote a real fixed number and choose the value of € arg(z) that lies in the range
a < 6 < a+ 27, then the function log,, defined by

log,(z) =Inr + 6, (5.20)

where z = e’ # 0, and o < § < o + 2, is a single-valued branch of the logarithm function.
The branch cut for log, is the ray {re’® : » > 0}, and each point along this ray is a point of
discontinuity of log,. Because exp[log,(z)] = z, we conclude that the mapping w = log,(2) is a
one-to-one mapping of the domain |z| > 0 onto the horizontal strip {w : @ < Im(w) < a + 27}.
If a < ¢ <d< a+2n, then the function w = log, (z) maps the set D = {re? :a <r <b, ¢ <
0 < d} one-to-one and onto the rectangle R = {u+iv :Ina < u <Inb, ¢ < v < d}. Figure 5.4
shows the mapping w = log, (), its branch cut {re® : r > 0}, the set D, and its image R.

y v
\ \

i(a+2p)

w =log,(z)
_—

w0

y 4

Figure 5.4: The branch w = log, (z) of the logarithm

We can easily compute the derivative of any branch of the multivalued logarithm. For a
particular branch w = log,,(z) for z = re? # 0, and a < 6 < a + 27 (note the strict inequality
for 0), we start with z = exp(w) in Equations (5.10) and differentiate both sides to get

1= iz = % exp (log,(2))

dz d
d
= exp (loga(2)) 7~ loga(2)

= Zdiz log,,(2).
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Solving for d% log,,(z) gives

d 1 4
d—loga(z):f, for z=re? 40, and «a <6 <o+ 2w
z z

The Riemann surface for the multivalued function w = log(z) is similar to the one for the
square root function. However, it requires infinitely many copies of the z plane cut along the
negative x axis, which we label Sy for k = ..., —n,...,—2, —=1,0,1,2,...,n,.... We stack
these cut planes directly on each other so that the corresponding points have the same position,
and join the sheet S to Siy1 as follows: For each integer k, the edge of the sheet Sy in the
upper half-plane is joined to the edge of the sheet Siy1 in the lower half-plane. The Riemann
surface for the domain of log looks like a spiral staircase that extends upward on the sheets
S1, ,59, ... and downward on the sheets S_;, S_o,..., as shown in Figure 5.5. We use polar
coordinates for z on each sheet. Thus, for S, we have

z=r(cosf +isinf), where
r=1|z|, and 27k —7m <60 <7+ 27k.

Again, for S, the correct branch of log(z) on each sheet is

log(z) =1Inr +i6, where
r=|z[, and 27wk —m <6 <m+27k.

3n
S
T
w=logz
—
So u
-
S,
-3n

Figure 5.5: The Riemann surface for mapping w = log(z)
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Exercises for Section 5.2 (Selected answers or hints are on page 440.)

1. Find all values for
(a)
(b) L Z)

(c) Log Z\/§ V2).

(d) Log[(1+14)7].

e) log(—3).
)
)
)

Lo
Lo
(
(f
(2) log(4i).

(h) log(—v/3 —1).

2. Use the properties of arg(z) in Section 1.4 to establish

log 8.

(a) Equation (5.18).
(b) Equation (5.19).

3. Find all the values of z for which each equation holds.

(a) Log(z) =1—1%.
(b) Log(z —1) =17.
(c) exp(z) = —ie.

(d) exp(z+1) =1.
4. Refer to Theorem 5.2.

(a) Explain why —7 < Arg(z1)+Arg(z2) < 7 implies that Arg(z129) = Arg(z1)+Arg(22).
(b) Prove the “only if” part.

5. Refer to Equation (5.20) and pick an appropriate value for a so that the branch of the
logarithm log,, (z) will not be analytic at z = 2, where

(a) z0=1
(b) 20 = —1+1iV3.
(c) zo =1.
(d) z0 =—i
() z0=—1—1.
(f) 20 =3 —i.
6. Show that f(z) = I;Si(:f;fz) is analytic everywhere except at the points —1, —2, and on

the ray {(z,y) : z < =5, y = 0}.

7. Show that the following are harmonic functions in the right half-plane {z : Rez > 0}.

(a) u(z,y) =In(2® +y?).
(b) v(z,y) = Arctan(¥).
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8. Show that 2" = exp[nlog,(z)], where n is an integer and log, is any branch of the
logarithm.

9. Construct a branch of f(z) = log(z 4+ 4) that is analytic at the point z = —5 and takes
on the value 77 there.

10. For what values of z is it true that
(a) Log(%) = Log(z1) — Log(22)? Why?
(b) LLog(z) = 1?7 Why?
(c) Log(%) = —Log(z)? Why?

11. Construct branches of f(z) = log(z +2) that are analytic at all points in the plane except
at points on the following rays.

(a) {(Cl?,y) x> =2,y = O}
(b) {(LU,y) rr==2,y> O}
(C) {(%,y) tx=-2,y< O}

12. Show that the mapping w = Log(z) maps

(a) theray {z =re” : r >0, § = Z}one-to-one and onto the horizontal line {(u,v) : v =
5}

(b) the semicircle {z = 2¢" : —Z < 0 < Z} one-to-one and onto the vertical line segment
{In2,v): =% <v < T}

13. Find specific values of z1 and 23 so that Log(Z) # Log(z1) — Log(22).
14. Show why the solutions to Equation (5.10) are given by those in Equation (5.11). Hint:
Mimic the process used in obtaining Identities (5.8) and (5.9).

15. Explain why no branch of the logarithm is defined when z = 0.

5.3 Complex Exponents

In Section 1.5 we indicated that it is possible to make sense out of expressions such as /1 + i or
i* without appealing to a number system beyond the framework of complex numbers. We now
show how this is done by taking note of some rudimentary properties of the complex exponential
and logarithm, and then using our imagination.

We begin by generalizing Identity (5.15). Equations (5.12) and 5.14 show that log(z) can
be expressed as the set log(z) = {Log(z) + i2nm : n is an integer}. We can easily show (left
as an exercise) that, for z # 0, exp[log,(z)] = z, where log,, is any branch of the function log.
But this means that, for any ¢ € log(z), the identity exp ¢ = z holds true. Because exp[log(z)]
denotes the set {exp( : ( € log(z)}, we see that exp[log(z)] = z, for z # 0.

Next, note that Identity (5.17) gives log(z") = nlog(z), where n is any natural number, so
that expllog(z")] = exp[nlog(z)] = 2", for z # 0. With these preliminaries out of the way, we
can now come up with a definition of a complex number raised to a complex power.

Definition 5.4 (Complex exponent). Let ¢ be a complex number. We define z¢ as

2 = exp [clog(2)]. (5.21)
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The right side of Equation (5.21) is a set. This definition makes sense because, if both z
and ¢ are real numbers with z > 0, Equation (5.21) gives the familiar (real) definition for z¢,
as the following example illustrates.

Example 5.6. Use Equation (5.21) to evaluate 4z,
Solution:
Calculating 42 = exp[3 log(4)] gives

1
3 log(4) = {In2 +4nm : n is an integer}. (5.22)

Thus 42 is the set {exp(In2 + inm) : n is an integer}. The distinct values occur when n =
0, 1. Plugging these values into Equation (5.22) gives exp(In2) = 2 and exp(In2 + iw) =
exp(In2) exp(im) = —2. In other words, 42 = {-2, 2}.

The expression 42 is different from /4, as the former represents the set {—2, 2} and the
latter gives only one value, v/4 = 2.

Because log is multivalued, the function z¢ will, in general, be multivalued. If we want to
focus on a single value for z¢, we can do so via the function defined for z # 0 by

f(2) = exp[cLog(z)], (5.23)

which is called the principal branch of the multivalued function z¢. Note that the principal
branch of z¢ is obtained from Equation (5.21) by replacing log(z) with the principal branch of
the logarithm.

Example 5.7. Find the principal values of /1 + ¢ and ¢*.

Solution:

From Example 5.3

In2
L%a+wy:%f+¢%=hn%+ig and
™
Log(i) = i_.
og(i) =1 5

Identity (5.23) yields the principal values of v/1 + i and i’
Viti=(1+1i)2
1
= exp [2Log(1 + z)]

1
= exp [2(ln 23 4 11)]

= exp (ln 21 + z%)

= 2% (cos il + 7sin E)
N 8 8
~ 1.09684 + 0.45509i, and

it = expliLog(i)]
e i ()
o ()

~ 0.20788.
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Note that the result of raising a complex number to a complex power may be a real number
in a nontrivial way.

We now consider the possibilities that arise when we apply Equation (5.21).
Case(i): Suppose that ¢ = k, where k is an integer. Then, if z = re? # 0,
klog(z) = {kIn(r) + ik(0 + 2nm : n is an integer}.
Recalling that the complex exponential function has period 27i, we have
2P = exp [k: log(z ]
= exp [kIn(r) + ik(6 + 2n7)]
= exp [ In( ) + ik + i2kn]
= exp [In(r")] exp(ik0) exp(i2knm)
= ¥ exp(ik6) = r¥(cos kO + i sin k6),

which is the single-valued kth power of z that we discussed in Section 1.5.

Case(ii): If ¢ = %, where k is an integer, and z = re’? # 0, then

110 z = llnr—l—w'nisanin‘ce er
EOES Tk ko sy
Hence, Equation (5.21) becomes
1 1
2k =exp | o log(z) (5.24)
1 0+ 2nm
=exp | In(r) + =
2
=¥ exp ( o +k: n7r> (5.25)

Sl

=r

cos 79 + 2nm + 2sin 79 + 2nm
k k '

When we again use the periodicity of the complex exponential function, Equation (5.24) gives
k distance values corresponding to

Therefore, as Example 5.6 illustrated, the fractional power 2% is the multivalued kth root
function.

Case(iii): If j and k are positive integers that have no common factors and ¢ = %, then
Equation (5.21) becomes

i i (04 2nm)j i (0 + 2nm)j .. (04 2nm
zk =rkexp |[i———=| =71k |cos | ————= | +isin | —— || .
k k k
Again, there are k distance values that correspond with n =0, 1,..., k — 1.

Case(iv): If cis not a rational number, then there are infinitely many values for z¢, provided

z # 0.
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Example 5.8. The values of 25T 50 are

i 1 )
25+30 = exp [(9 + 520) (In2 + iQnW)}

B In?2 n7r+, ln2+2n7r
TP T T T 50 T g

2% _nz ln2+2n7r Lisi 1n2+2n7r
= cos [ — + — sin (| — + —
€ 50 9 A0 T 9 )|

. . o 1,5 .
where n is an integer. The principal value of 25150 is

i In2 In2
25555 = 25 [cos [ o | +isin | —= ) | ~ 1.079956 + 0.014972i.
50 50
Figure 5.6 shows the terms for this multivalued expression corresponding to
n=-9 -8,...,—1,0,1,...,8,9.

They exhibit a spiral pattern that is often present in complex powers.

y
A

-2

/

Figure 5.6: Some of the values of 25+

Some of the rules for exponents carry over from the real case. In the exercises we ask you

to show that if ¢ and d are complex numbers and z # 0, then

_ 1
2 = —,
~C
Zczdzzc+d’
c
< _ .c—d
— = 2 ,
z

where n is an integer.

The following example shows that Identity (5.29) does not hold if n is replaced with an

arbitrary complex value.

146



Example 5.9.

(i%)" = exp [ilog(—1)] = e 0F2M7  where n is an integer, and

(i)* = exp(2ilogi) = e (47T where n is an integer.

Since these sets of solutions are not equal, Identity (5.29) does not always hold.

We can compute the derivative of the principal branch of z¢ which is the function f(z) =
exp[cLog(z)]. By the chain rule,

f'(z)= gexp [cLog(z)]. (5.30)

If we restrict z¢ to the principal branch, z¢ = exp [cLog(z)], then Equation (5.30) can be
written in the familiar form that you learned in calculus. That is, for z # 0 and z not a negative

real number,
d c
c—1

We can use Identity (5.21) to define the exponential function with base b, where b # 0 is a
complex number:
b* = exp [z log(b)].

If we specify a branch of the logarithm, then b* will be single-valued and we can use the
rules of differentiation to show that the resulting branch of b* is an analytic function. The
derivative of b* is then given by the familiar rule

d
—b* =b°1 b 5.31
b = log, (b), (531)

where log,, is any branch of the logarithm whose branch cut does not include the point b.
Exercises for Section 5.3 (Selected answers or hints are on page 441.)

1. Find the principal value of
(a) 4%
(b) (1+4)™.
ONC I
(@) (1+iV3)%.

2. Find all values of
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3. Show that, if z # 0, then 2° has a unique value.
4. For z = re'® # 0, show that the principal branch of
(a) 2% is given by the equation
2t =e?[(Inr) +isin(lnr)],

where r > 0 and —7m < 6 < .

(b) 2% (a a real number) is given by the equation
2% = r%cosal + ir®sinab,
where r >0 and —7m < 0 <.

5. Let z, = (1 +¢)" for n = 1, 2,... Show that the sequence {z,} is a solution to the
difference equation z,, = 2z,_1 — 2z,_o for n > 3.

6. Verify the following identities:

5.26).

(a) Identity
( 5.27).

)
b) Identity )
(c) Identity (5.28).
(d) )
) )

~—~~ o~ —~

d) Identity (5.29).
(e) Identity (5.31).

7. Does 1 raised to any power always equal 17 Why or why not?

8. Construct an example that shows that the principal value of (2’12’2)% need not equal the
1 1
product of the principal values of z{ and z3.

9. If ¢ is a complex number, the expression i may be multivalued. Suppose all the values

of |i¢| are identical. What are these values, and what can be said about the number ¢?
Justify your assertions.

5.4 Trigonometric and Hyperbolic Functions

Based on the success we had in using power series to define the complex exponential, we have
reason to believe that this approach will also be fruitful for other elementary functions. The
power series expansions for the real-valued sine and cosine functions are

o0 p2n+l e r2n
: _ n _ _1\n
sinx = g (-1) 2nr 1) and cosx = E (—1) o)l
n=0 n=0

so it is natural to make the following definitions.

Definition 5.5 (sinz and cos z).

0 »2n+1 o0 »2n
sinz = g (=1)"——— and cosz= E (=" :
o (2n + 1)! o (2n)!
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With these definitions in place, we can now easily create the other complex trigonometric
functions, provided the denominators in the following expressions are not zero.

Definition 5.6 (Other Trigonometric functions).

tanz = , cotz = ——, secz = , and cscz=—.
cos z sin 2z cos 2 sin 2z

The series for the complex sine and cosine agree with the real sine and cosine when z is real,
so the remaining complex trigonometric functions likewise agree with their real counterparts.
What additional properties are common? For starters, we have

Theorem 5.4. sinz and cos z are entire functions, with % sin z = cos z and d% cosz = —sin z.

Proof. The ratio test shows that the radius of convergence for both functions is infinity, so they
are entire by Theorem 4.17, part (i). Part (iii) of that theorem gives

d d o z2n+1
IRl - 1y

n=

[e.e]
2 1) z2n
= Z(—l)”((n_‘_)z (Why does the index n stay at 0 here?)
n=0

2n +1)!
> 2n
- Z(_l)n : !
~ (2n)!
= cos z.
We leave the proof that d% cos z = —sin z as an exercise. O

We now list several additional properties, providing proofs for some and leaving others as
exercises.

e For all complex numbers z,

sin(—z) = —sin z,
cos(—z) =cosz, and
sin? z 4 cos? z = 1.

The verification that sin(—z) = —sinz and cos(—z) = cos z comes from substituting —z
for z in Definition 5.5. We leave verification of the identity sin®z + cos®?z = 1 as an
exercise (with hints).

e For all complex numbers z for which the expressions are defined,

— tan z = sec? z,
dz
_ 2
—cotz = —csc” z,
dz
—secz =secztanz, and
dz
— CsCz = —csczcot z.
dz
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The proof that d% tan z = sec? z uses the identity sin® z + cos? z = 1:
d d (sinz cos zdi sin z — sin zdi CoS 2
—tanz = — = Z z
dz dz \ cosz cos? z
cos? z + sin? z 1
cos? z cos? z
= sec? 2.

We leave the proofs of the other derivative formulas as exercises.

To establish additional properties, expressing cos z and sin z in the Cartesian form u-+iv will
be useful. (Additionally, the applications in Chapters 10 and 11 will use these formulas.) We
begin by observing that the argument given to prove part (iii) in Theorem 5.1 easily generalizes
to the complex case with the aid of Definition 5.5. That is,

e” = cosz +isinz, (5.32)
for all z, whether z is real or complex. Hence

e = cos(—2z) +isin(—2z) = cos z — isin 2. (5.33)

Subtracting Equation (5.33) from Equation (5.32) and solving for sin z gives

1 . .
sinz = Z(ezz —e %) (5.34)
_ 1 <ei(x+iy) _ efi(eriy))
21
1 —y+iz Yy—1ix
=9 (e — ')

1
=5 [e7¥(cosz +isinz) — e¥(cosz — isinz)]
i

i ey + e_y + . ey — e_y
=smx\ ——— 1CO8ST | ———
2 2

= sinx coshy + i cos z sinh y, (5.35)

where coshy = and sinhy = ey_;_y, respectively, are the hyperbolic cosine and hyper-

bolic sine functions that you studied in calculus.

eYqe Y
2

Similarly,
cosz =

(e +e7%) (5.36)

(ei(x-i-iy) + e—i(x-i—iy))

=N =N =N =

(e—y-i-ia: + ey—ix)

[e7¥(cosz +isinz) + €¥(cosz — isinz)]
ey + efy . ey — efy
=cosx | ———— | —isinz [ —————
2 2
= cosz coshy — isinzsinhy. (5.37)

Equipped with Identities (5.34)—(5.37), we can now establish many other properties of the
trigonometric functions. We begin with some periodic results.
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e For all complex numbers z = x + 1y,

sin(z 4 27) = sin z,
cos(z + 2m) = cos z.
sin(z + 7) = —sin 2,
cos(z 4+ m) = —cos z,
tan(z +7) = tanz, and
(z+7)

cot(z + m) = cot z.

Clearly, sin(z + 27) = sin[(z + 27) + iy]. By Identity (5.35) this expression is

sin(z + 2m) cosh y 4 i cos(x + 27) sinh y = sinz cosh y 4 i cos x sinh y

= sin 2.
Again, the proofs for the other periodic results are left as exercises.
e If z; and 29 are any complex numbers, then

sin(z1 + 22) = sin 21 cos z3 + cos z1 sinze  and
cos(z1 + 2z2) = cos z1 o8 2z — sinzy sin 2z~ SO
sin2z = 2sin z cos z.

cos2z = cos® z — sin? z, and

sin(=+z)=sin{=—2) =cosz.
2 2
We demonstrate that cos(z1 + z2) = cos 21 cos z2 — sin 21 sin zo by making use of Identities

(5.34)~(5.37):

COS 21 COS 29 = |:ei(zl+22) + ei(21—22) + ei(ZQ—Zl) + e—i(Z1+Zz):| ’ and

—sinzy sinzy =

B s |

|:ei(z1+zz) - ei(zl—ZQ) - ei(22—21) + 6—1’(21—4—22)} )

Adding these expressions gives

COS 21 COS 29 — sin 21 Sin 29 = |:61(21+22) + eil(zﬁ"’?)] = cos(z1 + 22),

DN | =

which is what we wanted.

A solution to the equation f(z) = 0 is called a zero of the given function f. As we now
show, the zeros of the sine and cosine function are exactly where you might expect them
to be.

e We have sin z = 0 iff z = nm, where n is any integer, and cosz = 0 iff z = (n+ %)7?, where
n is any integer.

We show the result for cos z and leave the result for sin z as an exercise. When we use
Identity (5.37), cos z = 0 iff

0 = cosz coshy — ¢sinx sinh y.
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Equating the real and imaginary parts of this equation gives

0 =coszcoshy, and 0 =sinxsinhy.

The real-valued function cosh y is never zero, so the equation 0 = cos x cosh y implies that
0 = cosz, from which we obtain z = (n + %)7‘( for any integer n. Using the values for
z=x+1y=(Mn+ %)77 + 4y in the equation 0 = sin x sinh y yields

1
0 = sin {(n + 2)77} sinhy = (—1)"sinhy,

which implies that y = 0, so the only zeros for cos z are the values z = (n + 1) for any
integer n.

What does the mapping w = sin z look like? We can get a graph of the mapping w = sinz =
sin(z +1iy) = sin x cosh y+1i cos z sinh y by using parametric methods. Let’s consider the vertical
line segments in the z plane obtained by successfully setting r = —5 + %r for k=0,1,...,12,
and for each x value and letting y vary continuously, —3 < y < 3. In the exercises we ask you
to show that the images of these vertical segments are hyperbolas in the uv plane, as Figure

5.7 illustrates. In Chapter 10, we give a more detailed analysis of the mapping w = sin z.
y v

w=sinz 10 |
_

T
-10 =5 5 10

ofb
oo

-5+

-10 |

Figure 5.7: Vertical segments mapped onto hyperbolas by w = sin(z)

Figure 5.7 suggests one big difference between the real and complex sine functions. The real
sine has the property that |sinz| <1 for all real x. In Figure 5.7, however, the modulus of the
complex sine appears to be unbounded, which is indeed the case. Using Identity (5.35) gives

| sin z|? = | sin z cosh y + 4 cos z sinh y|?

2

= sin? z cosh? y + cos? zsinh? y

2 z(cosh? y — sinh? y) + sinh? y(cos® z + sin® z).

= sin
The identities cosh? y — sinh? y = 1 and cos? z + sin? z = 1 then yield
|sin z|? = sin® z + sinh? 3. (5.38)

A similar derivation produces

| cos z|* = cos? & + sinh? y. (5.39)
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If we set z = z¢ + iy in Identity (5.38) and let y — oo, we get

lim |sin(zo 4 iy)|? = sin® 2o + lim sinh?y = co.
y—00 Yy—r00

As advertised, we have shown that sin z is not a bounded function; it is also evident from
Identity (5.39) that cos z is unbounded.

The periodic character of the trigonometric functions makes apparent that any point in
their ranges is actually the image of infinitely many points.

Example 5.10. Find the values of z for which cos z = cosh 2.
Solution:
Starting with Identity (5.37), we write

cos z = cos x cosh y — ¢ sin x sinh y = cosh 2.
If we equate real and imaginary parts, then we get

cosx coshy = cosh 2 and sinzsinhy = 0.

The equation sin x sinh y = 0 implies either that x = 7wn, where n is an integer, or that y = 0.
Using y = 0 in the equation cosx coshy = cosh2 leads to the impossible situation cosz =
ggz}ﬁg = cosh 2 > 1. Therefore x = mn, where n is an integer. Since coshy > 1 for all values of
1y, the term cos z in the equation cos x cosh y = cosh 2 must also be positive. For this reason we

eliminate the odd values of n and get x = 2wk, where k is an integer.

Finally, we solve the equation cos 2wk cosh y = cosh y = cosh 2 and use the fact that coshy is
an even function to conclude that y = 4+2. Therefore the solutions to the equation cos z = cosh 2
are z = 2wk + 24, where k is an integer.

The hyperbolic functions also have practical use in putting the tangent function into the
Cartesian form u + iv. Using Definition 5.6, and Equations (5.35) and 5.37, we have

sin(x 4 iy)  sinxcoshy + icoswsinhy

tan z = tan(x + ty) = = .
(z+iy) cos(x +1y)  cosxcoshy —isinxsinhy

If we multiply each term on the right by the conjugate of the denominator, the simplified

result is ) ) ]
coszsinx + i cosh y sinh y

tan z =

. 5.40
cos? x cosh? y + sin? z sinh? y (5.40)

We leave it as an exercise to show that the identities cosh?y — sinh?y = 1 and sinh2y =
2 cosh y sinh y can be used in simplifying Equation (5.40) to get

sin 2z . sinh 2y

tanz = +1 . 5.41
cos2z 4+ cosh2y = cos2z + cosh 2y (5.41)
As with sinz, we obtain a graph of the mapping w = tanz parametrically. Consider
the vertical line segments in the z plane obtained by successively setting x = —7 + ’f—g for
k=0,1,...,8 and for each z value letting y vary continuously, —3 < y < 3. In the exercises we

ask you to show that the images of these vertical segments are circular arcs in the uv plane, as
Figure 5.8 shows. In Section 9.4 we give a more detailed investigation of the mapping w = tan z.

How should we define the complex hyperbolic functions? We begin with
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w=tanz 1
_—

NS
afo
L

3}

Figure 5.8: Vertical segments mapped onto circular arcs by w = tan z

Definition 5.7 (coshz and sinh z).

1 1
coshz = 5(6'2 +e %) and sinhz = 5(62 —e 7).

With these definitions in place, we can now easily create the other complex hyperbolic
trigonometric functions, provided the denominators in the following expressions are not zero.

Definition 5.8 (Complex hyperbolic functions).

sinh z cosh z 1 1
R— ———, sechz = and cschz = — .
cosh z sinh 2

As the series for the complex hyperbolic sine and cosine agree with the real hyperbolic sine
and cosine when z is real, the remaining complex hyperbolic trigonometric functions likewise
agree with their real counterparts. Many other properties are also shared. We state several
results without proof, as they follow from the definitions we gave using standard operations,
such as the quotient rule for derivatives. We ask you to establish some of these identities in the
exercises.

The derivatives of the hyperbolic functions follow the same rules as in calculus:

e coshz =sinhz and di sinh z = cosh z.

z z
d
— tanhz = sech’z and — cothz = —csch?z.
dz dz
isech z = —sechztanh 2z and icsch z = —csch z coth z.
dz dz

The hyperbolic cosine and hyperbolic sine can be expressed as
cosh z = coshzcosy + isinhzsiny, and
sinh z = sinh x cos y + i cosh x sin y.
The complex trigonometric and hyperbolic functions are all defined in terms of the expo-
nential function, so we can easily show them to be related by
cosh(iz) =cosz and sinh(iz) = isinz;

cos(iz) = coshz and sin(iz) = isinhz.
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Some of the important identities involving the hyperbolic functions are

cosh? z — sinh? z = 1.
sinh(z1 4 z2) = sinh 21 cosh 29 4 cosh z; sinh 25,
cosh(z1 + z2) = cosh 21 cosh z3 + sinh z; sinh 2y,
cosh(z + 2mi) = cosh 2,
sinh(z + 27i

)

) = sinh 2,
cosh(—z) = coshz, and
sinh(—z) = —sinh z.

We conclude this section with an example from electronics. In electric circuits, the voltage
drop, Eg, across a resistance R obeys Ohm’s law,

Ep = IR,

where [ is the current flowing through the resistor. Additionally, the current and voltage drop
across an inductor, L, obey the equation

E;, =LY
L dt

The current and voltage across a capacitor, C, are related by

1 t

Ec=
C Ji,

I(7)dr.

The voltages Ep, Er, and Ec and the impressed voltage E(t) illustrated in Figure 5.9
satisfy the equation
Ep + Egr+ Ec = E(t). (5.42)

Ec

E(1)

Figure 5.9: An LRC circuit
Suppose that the current I(¢) in the circuit is given by

I(t) = Ipsinwt.

Using this in the equations for EFr and Ey, gives

Er = Rlpsinwt, and (5.43)
E;, = wLIjcoswt. (5.44)
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We then set tg = 5 in the equation for E¢ to obtain

t

1
C’/ /Io sinwtdr = _EIO cos wt. (5.45)

We rewrite the equation I(t) = Iy sinwt as a “complex current,”
T* = Ioe'iwt

with the understanding that the actual physical current I is the imaginary part of I*. Similarly,
we rewrite Equations (5.43)—(5.45) as

E} = RIpe™ = RI".
E; = ilegeiwt = qwLI*, and

1 1
Bl = —Iye™' = —1T*.
¢ iwC 0¢ wC

Substituting these terms leads to an extension of Equation (5.42),

1

The complex quantity Z defined by

1
7 — i wL — —
R+z<w wC)

is called the complex impedance. Substituting this expression into Equation (5.46) gives
E*=Z7I".

which is the complex extension of Ohm’s law.
Exercises for Section 5.4 (Selected answers or hints are on page 441.)

1. Establish that 7 cosz = —sin z for all 2
2. Demonstrate that, for all z, sin? z 4 cos? z = 1, as follows.

(a) Define the function g(z) = sin? z + cos? z. Explain why g is entire.
(b) Show that g is constant. Hint: Look at ¢g'(z).
(c) Use part (b) to establish that, for all z, sin® z + cos? z = 1.

3. Show that Equation (5.40) simplifies to Equation (5.41). Hint: Use the facts that cosh? y—
sinh? y = 1 and sinh 2y = 2 cosh y sinh y.

4. Explain why the diagrams in Figures 5.8 and 5.9 came out they way they did.
5. Show that, for all z,

(a) sin(m — z) = sin z.
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(b) sin(§ — z) = cos z.

(c) sinh(z + im) = —sinh z.
(d) tanh(z + im) = tanh z.
(e) sin(iz) = isinh z.

(f)

6. Express the following quantities in u + v form.

f) cosh(iz) = cos z.

(a) cos(l + z)

8. Show that

(a) sinz = sin z holds for all 2.
(b) sinz is nowhere analytic.

(¢) coshz = cosh z holds for all z.
(d) coshZz is nowhere analytic.

9. Show that

(a) lim 2=l —
z—0

(b) EIJP tan(xg + iy) = i, where xg is any fixed real number.
Y 9]
10. Find all values of z for which each equation holds.
(a) sinz = cosh4.
(b) cosz = 2.

(c) sinz = isinh 1.
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11.

12.

13.

14.

15.

16.

17.

18.

(d) sinhz = 3.
(e) coshz=1.

Show that the zeros of sin z are at z = nm where n is an integer.

Use Equation (5.38) to show that, for z = = + iy,

| sinh y| < |sinz| < coshy.

Use Identities (5.38) and (5.39) to help establish the inequality
| cos z|? + |sinz|> > 1,

and show that equality holds iff z is a real number.

Show that the mapping w = sin z

(a) maps the y axis one-to-one and onto the v axis;
(b) maps the ray given {(z,y) : * = §, y > 0} one-to-one and onto the ray defined by
{(u,v) :u>1,v=0}

Given an elegant argument that explains why the following functions are harmonic.

) = sinx cosh y.
) = coszsinhy.
)

= sinhz cosy.

Establish the following identities.

(a) € = cosz +isin z.

(b) cosz = cosx coshy — isinzsinhy.
()

(d)
(e)
(f) cosh? z —sinh? z = 1.

(g) cosh(z1 + 2z2) = cosh z; cosh 2z + sinh 21 sinh 2.

sin(z1 + 2z2) = sin 21 cos za + cos 21 sin 2o.
| cos 2|2 = cos? z + sinh?y.

cosh z = coshx cosy + ¢sinh z siny.

—

Find the complex impedance Z if

(a) R=10, L =10, C =0.05, and w = 2.
(b) R=15, L =10, C = 0.05, and w = 4.

Explain how sin z and the function sin x that you studied in calculus are different. How
are they similar?
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5.5 Inverse Trigonometric and Hyperbolic Functions

We expressed trigonometric and hyperbolic functions in Section 5.4 in terms of the exponential
function. In this section we look at their inverses. When we solve equations such as w = sin z
for z, we obtain formulas that involve the logarithm. Because trigonometric and hyperbolic
functions are all periodic, they are many-to-one; hence their inverses are necessarily multivalued.
The formulas for the inverse trigonometric functions are

arcsin z = —i log [zz +(1- 22)%} , (5.47)
arccos z = —i log [z +i(1— 22)%} , and

1 1+ 2z
arctan z = — log < . > .

2 11—z

We can find the derivatives of any branch of these functions by using the chain rule:

1
—arcsing = ——— 5.48
dz (1— 22)% (5.48)
-1
—arccos z = —, and
dz (1 — 22)5
e arctan z = 112

We derive Equations (5.47) and (5.48) and leave the others as exercises. If we take a
particular branch of the multivalued function, w = arcsin z, we have

: 1 W —iw

z=sinw = —(e" —e ")

2i ’

which we can also write as
e — 2z —e " =0.

Multiplying both sides of this equation by e™ gives (e!*)? — 2ize®™ — 1 = 0, which is a
quadratic equation in terms of . Using the quadratic equation to solve for e, we obtain

_ 2iz+ (4 422)%
B 2

where the square root is a multivalued function. Taking the logarithm of both sides of this last
equation leads to the desired result:

eiw

=iz 4 (1— 2%z,

. . . 2\ 1
w = arcsinz = —ilog |iz + (1 — 27)2
where the multivalued logarithm is used. To construct a specific branch of arcsin z, we must
first select a branch of the square root and then select a branch of the logarithm.

We get the derivative of w = arcsin z by starting with the equation sinw = z and differen-
tiating both sides, using the chain rule:

LA
dzsmw—dzz,

ismwd—w—l

d dz 7
dw 1




When the principal value is used, w = arcsinz = —ilLog [zz +(1- 22)%] maps the upper
half-plane {z : Im(z) > 0} onto a portion of the upper half-plane {w : Im(w) > 0} that lies in
the vertical strip {w : =¥ < Re(w) < §}. The image of a rectangular grid in the z plane is a
“spider web” in the w plane, as Figure 5.10 shows.

w = arcsin z
—_—

)
S}
T

x - —u
-10 -8 -6 -4 -2 2 4 6 8 10 -2 nl2

Figure 5.10: A rectangular grid is mapped onto a spider web by w = arcsin z

Example 5.11. The values of arcsin /2 are given by

arcsin V2 = —ilog

iv2+ (1 - (\/§)2>%] — _ilog(iv2 £1). (5.49)

Using straightforward techniques, we simplify this equation and obtain
arcsin V2 = —ilog [(\/5 + 1)2]
—i [m(\/ﬁi 1)+ (g + 2n7r)}

= g + 2nmw — iln(x@:l: 1), where n is an integer.

We observe that

o (V2-1(V2+1) T
In(v2-1)=1In o1 —lnﬁ+1— In(v2+1)

and then write

arcsin V2 = g +2nm +iln(vV2 + 1), where n is an integer.

Example 5.12. Suppose that we make specific choices in Equation (5.49) by selecting +i as

the value of the square root [1 — (\/5)2]% and using the principal value of the logarithm. With
f(2) = Arcsin z, The result is

f(V2) = Arcsinv/2 = —iLog(iv2 + i) = g —iln(vV2+ 1),

and the corresponding value of the derivative is given by



The inverse hyperbolic functions are

N

arcsinh z = log {z + (2% 4+ 1)

]

arccosh z = log [2 + (22 — 1)%} , and

1 1+2
tanh z = —1 . 5.50
arctanh z 20g<1_z> (5.50)
Their derivatives are
) 1
—arcsinh 2 = ———,
dz (22 +1)2
1
—arccosh z = —, and
dz (22 -1)2
d 1
iarctanh i=1" 3

To establish Identity (5.50), we start with w = arctanhz and obtain

ev—ev e 1
z =tanhw = = .
ev 4 e~w e +1

which we solve for ¥, getting e?¥ = Liz Taking the logarithms of both sides gives

1 1
w:arctanhz:210g< +Z),

1—2
which is what we wanted to show.

Example 5.13. Calculation reveals that

1 1+1+2¢ 1
arctanh(1 + 2i) = 5 log T-1-% i 1 i 22, =3 log(—1+1)
—1—-2

1 3
:4ln2+z’<8+n>7r,

where n is an integer.

Exercises for Section 5.5 (Selected answers or hints are on page 442.)

1. Find all values of the following.

(a
(b
(c
(

) 5
)
)
d) arccos 3i.
)
)
)

arcsin 3.
5

arccos 3.

arcsin 3.

e) arctan 2:.

(
(f
(g

arctanz.

arcsinh <.
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(h) arcsinh 3.
(i)
)

k) arctanhi.
(1) arctanhiv/3.

2. Establish the following identities.

arccosh 1.

arccosh %

—~

(a) arccosz = —ilog |z +i(1 — 22)%
-1

(1-22)2

z'+z)

1—z/"

(b) d% arccos z =

arctan z = % log(

d _ 1

(d) 4 arctanz = .

(e) arcsinz + arccos z = § + 2n7, where n is an integer.
d 1

(f 1—22"

arcsinh z = log [z + (22 + 1)%}

d

)
)
)
) j;arctanhz =
)
) j;arcsinh z =

1
(Z+1)172
(i) arccosh z = log [z + (22 — 1)%}

d

(j) farccoshz = —1

(22-1)

Nl
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Chapter 6

Complex Integration

Overview

Of the two main topics studied in calculus—differentiation and integration—we have so far only
studied derivatives of complex functions. We now turn to the problem of integrating complex
functions. The theory you will learn is elegant, powerful, and a useful tool for physicists and
engineers. It also connects widely with other branches of mathematics. For example, even
though the ideas presented here belong to the general area of mathematics known as analysis,
you will see as an application of them one of the simplest proofs of the fundamental theorem
of algebra.

6.1 Complex Integrals

We introduce the integral of a complex function by defining the integral of a complex-valued
function of a real variable.

Definition 6.1 (Integral of f(t)). Let f(t) = u(t)+iv(t), where u and v are real-valued functions
of the real variable t for a <t <b. Then

/abf(t) it = /abu(t) dt+i/abv(t) dt. (6.1)

We generally evaluate integrals of this type by finding the antiderivatives of u and v and
evaluating the definite integrals on the right side of Equation (6.1). That is, if U'(t) = u(t),
and V'(t) = v(t), for a <t < b, we have

t=b

b
[ =+ v

Example 6.1. Show that

Solution:
We write the integrand in terms of its real and imaginary parts, i.e., f(t) = (t —i)3 = t3 — 3t +
i(—=3t% +1). Here, u(t) = t3 — 3t and v(t) = —3t% + 1. The integrals of u and v are
1 5 1
/0 (t3 —3t)dt = - and /0 (=3t* +1)dt = 0.
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Hence, by Definition 6.1,

/Ol(t—i)Bdt

Example 6.2. Show that

Il
N
2.

I

=~

N~—

Q

y

+

~.
c\
2.

4

—~

&t

Q

~

Il

[
=] ot

™

/2 exp(t + it) dt =
0

DN |

Solution:
We use the method suggested by Definitions 6.1 and 6.2.

2 . L,
/ exp(t + it) dt = / e'e’dt
0 0

= / e'(cost 4 isint) dt
0

3 . 2 .
= e'costdt +1 e’ sintdt.
0 0

We can evaluate each of the integrals via integration by parts. For example,

VB

3
e! costdt = (_e' sint)
0~ —~— ~—~—
u

dv u v v du

x0T
= (e2 sin — — "sin0) — e' sintdl
2 0 N~

dv
—e2 — e’ sintdt
0 U dv
B . t=1 3 .
262—(6 —Cost)‘ + —cost e’ dt
vL_ __z] =0 0 ~—~—"~~
u v [ du

us

x 2,
:e2—1—/ e’ costdt.
0

Adding [? €' costdt to both sides of this equation and then dividing by 2 gives [? e’ cost dt =

%(6% —1). A similar computation procedure yields i [;? ' sint dt = %(e% + 1). Therefore,

™

2 1, =
/2 exp(t +it)dt = —(e2 — 1)+ —(ez +1).
0 2 2

Complex integrals have properties that are similar to those of real integrals. We now trace

through several commonalities. Let f(t) = u(t) +iv(t) and g(t) = p(t) + ig(t) be continuous on
a<t<hb.

e Using Definition 6.1, we can easily show that the integral of their sum is the sum of their
integrals, that is

b b b
/ LF() + g(t)] dt = / £t dt + / g(t) dt. (6.3)
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If we divide the interval @ <t < binto a <t < ¢ and ¢ < ¢t < b and integrate f(t) over
these subintervals by using Definition 6.1, then we get

/a ’ Ft)dt = / " r)di+ / ’ F(t) dt. (6.4)

Similarly, if ¢ + id denotes a complex constant, then

b b
/ (c + id) f(£) dt = (c + id) / (1) dt. (6.5)

If the limits of integration are reversed, then

b a
/a F(t)dt = — /b F(t) dt. (6.6)

The integral of the product fg becomes
b b
[ syt = [ Tuon(e) - oao] de
b
+z‘/ [u(t)q(t) + v(t)p(t)] dt. (6.7)

Example 6.3. Let us verify Property (6.5). We start by writing
(c+id)f(t) = (c+id)(u(t) +iv(t)) = cu(t) — dv(t) + i[cv(t) + du(t)].

Using Definition 6.1, we write the left side of Equation 6.5 as

c/abu(t)dtd/abv(t)dt+ic/abv(t)dt+id/abu(t)dt.

which is equivalent to
b b
(c + id) V u(t) dt—l—z‘/ o(®) dt] .

It is worthwhile to point out the similarity between Equation (6.2) and its counterpart in
calculus. Suppose that U and V are differentiable on a < t < b and F(t) = U(t) +4V (t). Since
F'(t)=U"(t) +iV'(t) = u(t) +iv(t) = f(t), Equation (6.2) takes on the familiar form

t=b

b
/ fydt=F(@t)| = F@) - F(a). (6.8)

t=a

where F'(t) = f(t). We can view Equation (6.8) as an extension of the fundamental theorem
of calculus. In Section 6.5 we show how to generalize this extension to analytic functions of a
complex variable. For now, we simply note an important case of Equation (6.8):

b
/ It dt = F(b) — f(a). (6.9)
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Example 6.4. Use Equation (6.8) to show that

z 1 |
/2 exp(t +it)dt = 5(ez — 1) + %(65 +1).
0

Solution:
We seek a function F' with the property that F/(t) = exp(t+it). We note that F(t) = I%Lietu“)
satisfies this requirement, so

2 1 L=z 1 .
t+it)dt = ——et0H)| 2 = o3 — 1
/0 exp(t+it)dt = 3= = et — 1)
1 .
= S —i)ieF - 1)
1 us ) s
53 =1+ 5(e? +1),

which is the same result we obtained in Example 6.2, but with a lot less work!

Remark 6.1. Ezample 6.4 illustrates the potential computational advantage we have when
we lift our sights to the complex domain. Using ordinary calculus techniques to evaluate

foi el costdt, for example, would require a lengthy integration by parts procedure. When we rec-

ognize this expression as the real part of ff exp(t + it) dt, however, the solution comes quickly.
This is just one of the many reasons why good physicists and engineers, in addition to mathe-
maticians, benefit from a thorough working knowledge of complex analysis.

Exercises for Section 6.1 (Selected answers or hints are on page 442.)

1. Use Equations (6.1) and (6.2) to find

(3t —i)2dt.

2. Let m and n be integers. Show that

/27r it int gy _ { 0, when m #n;
0

2w, when m = n.

3. Show that [;° e *!dt = 1 provided Re(z) > 0.
4. Establish the following identities.

(a) Identity (6.3).
(b) Identity (6.4).
(c) Identity (6.6).
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(d) Identity (6.7).
5. Let f(t) = u(t) + iv(t), where v and v are differentiable. Show that

b
| @ =0 - 5 .
6. Use integration by parts to verify that ifog elsintdt = %(eg +1).

6.2 Contours and Contour Integrals

In Section 6.1 we showed how to evaluate integrals of the form f: f(t) dt, where f was complex-
valued and [a, b] was an interval on the real axis (so that ¢ was real, with ¢ € [a, b]). In this
section, we define and evaluate integrals of the form fc f(2)dz, where f is complex-valued and
C' is a contour in the plane (so that z is complex, with z € C'). Theorem 6.1 provides our main
result, which shows how to transform the latter type of integral into the kind we investigated
in Section 6.1.

We use concepts first introduced in Section 1.6. Recall that to represent a curve C in the
plane we use the parametric notation

C:z(t) =z(t) +iy(t), for a<t<b, (6.10)

where z(t) and y(t) are continuous functions. We now place a few more restrictions on the type
of curve to be described. The following discussion leads to the concept of a contour, which is a
type of curve that is adequate for the study of integration.

Recall that C' is simple if it does not cross itself, which means that z(¢1) # z(t2) whenever
t1 # to, except possibly when t; = a and ty = b. A curve C with the property z(b) = z(a) is a
closed curve. If z(b) = z(a) is the only point of intersection, then we say that C' is a simple
closed curve. As the parameter t increases from the value a to the value b, the point z(t)
starts at the initial point z(a), moves along the curve C, and ends up at the terminal point
z(b). If C is simple, then z(¢) moves continuously from z(a) to z(b) as t increases and the
curve is given an orientation, which we indicate by drawing arrows along the curve. Figure 6.1
illustrates how the terms simple and closed describe a curve.

The complex-valued function z(t) = x(t) + iy(t) is said to be differentiable on [a,b] if both
x(t) and y(t) are differentiable for a < ¢t < b. Here we require the one-sided derivatives ! of x(t)
and y(t) to exist at the endpoints of the interval. As in Section 6.1, the derivative z'(t) is

2'(t)=a'(t) +iy'(t), for a<t<b.

The curve C defined by Equation (6.10) is said to be a smooth curve if the function 2’ is
continuous and nonzero on the interval. If C' is a smooth curve, then C has a nonzero tangent

vector at each point z(t), which is given by the vector z'(t). If z’(tg) = 0, then the tangent
vector z/(tg) = iy’ (to) is vertical. If 2/(¢y) # 0, then the slope % of the tangent line to C' at
y/(to)
z'(to)
tangent vector z'(t) is defined for all values of t € [a, b] and is continuous. Thus a smooth curve

has no corners or cusps. Figure 6.2 illustrates this concept.

the point z(tg) is given by . Hence for a smooth curve the angle of inclination 6(t) of its

!The derivatives on the right, z’(a™), and on the left, z’(b™), are defined by the limits

oty e 2() —z(a) vy o ax(t) — x(b)
ety = i T e 2 00) = i TR
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z(b)

z(a) (1) (1)
z(a) = z(b)
(a) A curve that is simple. (b) A simple closed curve.
2(b)

Z(a) (1)

(1)

z(a) = z(b)

(c) A curve that is not simple (d) A closed curve that is not simple.

and not closed.

Figure 6.1: The terms simple and closed used to describe curves

(1) 2(1)

@ 4(b)

z(a) z(a)
(a) A smooth curve. (b) A curve that is not smooth.

Figure 6.2: The term smooth used to describe curves

If C is a smooth curve, then ds, the differential of arc length, is given by
ds = /[z' (O + [y’ (]2 dt = |2'(t)| dt.

The function s(t) = \/x'(t)? + y’(t)? is continuous because =’ and y’ are continuous func-
tions, so the length L(C) of the curve C' is

b b
L(C) = / VEOP + [ (OF dt = / 2] dt. (6.11)

Now, consider C' to be a curve with parametrization

C:z(t) =x(t) +iy(t) for a<t<b.

The opposite curve —C traces out the same set of points in the plane, but in the reverse
order, and has the parametrization

—C: 29(t) = x(—t) +iy(—t) for —b<t< —a.
Since z2(t) = z1(—t), —C' is merely C traversed in the opposite sense, as Figure 6.3 illustrates.

A curve C that is constructed by joining finitely many smooth curves end to end is called a
contour. Let (', Co, ..., C), denote n smooth curves such that the terminal point of the curve
C}, coincides with the initial point of Cyy1, for k=1, 2,... ,n — 1. We express the contour C'
by the equation

C=C1+0Cy+---+C,,.

A synonym for contour is path.
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Zl(t) Zz(l)
21(b) 2(=b)
C -C

zy(a) Z(—a)

Figure 6.3: The curve C and its opposite curve —C

Example 6.5. Find a parametrization of the polygonal path C from —1 + i to 3 — i shown in
Figure 6.4.

Solution:

We express C as three smooth curves, or C' = C1+Co+C35. If weset 29 = —1+7 and z; = —1,
we can use Equation 1.48 to get a formula for the straight-line segment joining two points:

Cr:z(t) =20 +t(z1 —20) =(—1+41i)+t[-1—(-1417)], for 0<t<1.
When simplified, this formula becomes
Ci:z(t)=—-1+i(1—t), for 0<t<1.
Similarly, the segments Cs and C3 are given by

Cy: z9(t) = (—1+ 2t) + it, for 0<t<1, and
C3:23(t) =(1+2t)+i(1—2t), for 0<t<1.

=1+ L L+i

C, G G

Figure 6.4: The polygonal path C = C; +C2 + Cs from —1+1¢ to 3 — 4

& -1 = B

Lk

2
€

p=A

> X

Figure 6.5: Partition points {z;} and function evaluation points {cx} for a Riemann sum along
the contour C from z = A to z=B

We are now ready to define the integral of a complex function along a contour C in the
plane with initial point A and terminal point B. Our approach is to mimic what is done in
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calculus. We create a partition P, = {z9p = A4, 21, 22, ..., 2, = B} of points that proceed along
C from A to B and form the differences Az, = zp, — zp_1, for k =1, 2, ..., n. Between each
pair of partition points zx_1 and zp we select a point ¢ on C, as shown in Figure 6.5, and
evaluate the function f. We use these values to make a Riemann sum for the partition:

S(Pa) = flew)(z — zr-1) = Y fler) Az (6.12)
k=1 k=1

Assume now that there exists a unique complex number L that is the limit of every sequence
{S(P,)} of Riemann sums given in Equation (6.12), where the maximum of |Azy| tends toward
0 for the sequence of partitions. That number is the value of the integral of the function f
along C.

Definition 6.2 (Complex integral). Let C be a contour. Then

n—oo

[ ferde= m 3" ple)as,
c k=1
provided the limit exists in the sense previously discussed.

In Definition 6.2 the value of the integral depends on the contour. In Section 6.3 the Cauchy-
Goursat theorem will establish the remarkable fact that, if f is analytic, then fc f(2)dz is
independent of the contour.

Example 6.6. Use a Riemann sum to approximate the integral fc exp z dt, where C' is the
line segment joining the point A =0 to B =2+ 7.

Solution:

Set n = 8 in Equation (6.12) and form the partition Ps : 2z = % + zg—’; fork=0,1,2,...,8.
For this situation, we have a uniform increment Az, = % + i35. For convenience 