Let
\(\Delta z = \Delta x+i\Delta y\) and
\(\Delta w= \Delta u+i\Delta v\text{,}\) and let
\(\Delta z\) be small enough so that
\(z\) lies in the
\(\varepsilon\)-neighborhood of
\(z_0\) in which the hypotheses hold. We need to show that
\(\frac{\Delta w}{\Delta z}\) approaches the limit given in Equation
(3.2.3) as
\(\Delta z\) approaches zero. We write the difference,
\(\Delta u\text{,}\) as
\begin{equation*}
\Delta u=u(x_0+\Delta x,y_0+\Delta y) -u(x_0,y_0)
\end{equation*}
If we subtract and add the term \(u(x_0,y_0+\Delta y)\text{,}\) then we get
\begin{align}
\Delta u \amp = [u(x_0+\Delta x,y_0+\Delta y) - u(x_0,y_0+\Delta y)]\notag\\
\amp + [u(x_0,y_0+\Delta y) -u(x_0,y_0)]\text{.}\tag{3.2.5}
\end{align}
The partial derivatives
\(u_x\) and
\(u_y\) exist, so the mean value theorem for real functions of two variables implies that a value
\(x^*\) exists between
\(x_0\) and
\(x_0+\Delta x\) such that we can write the first term in brackets on the right side of Equation
(3.2.5) as
\begin{equation*}
u(x_0+\Delta x, y_0+\Delta y) - u(x_0,y_0 + \Delta y) = u_x(x^*, y_0+\Delta y) \Delta x\text{.}
\end{equation*}
Furthermore, as \(u_x\) and \(u_y\) are continuous at \((x_0, y_0)\text{,}\) there exists a quantity \(\varepsilon_1\) such that
\begin{equation*}
u_x(x^*,y_0+\Delta y) =u_x(x_0,y_0) + \varepsilon_1\text{.}
\end{equation*}
where \(\varepsilon_1 \to 0\) as \(x^* \to x_0\) and \(\Delta y \to 0\text{.}\) Because \(\Delta x \to 0\) forces \(x^* \to x_0\text{,}\) we can use the equation
\begin{equation}
u(x_0+\Delta x,y_0+\Delta y) -u(x_0,y_0+\Delta y) = [u_x(x_0,y_0) + \varepsilon_1] \Delta x\text{.}\tag{3.2.6}
\end{equation}
where
\(\varepsilon_1 \to 0\) as
\(\Delta x \to 0\) and
\(\Delta y \to 0\text{.}\) Similarly, there exists a quantity
\(\varepsilon_2\) such that the second term in brackets on the right side of Equation
(3.2.5) satisfies the equation
\begin{equation}
u(x_0,y_0+\Delta y) - u(x_0,y_0) = [u_y(x_0,y_0) + \varepsilon_2] \Delta y\text{.}\tag{3.2.7}
\end{equation}
where
\(\varepsilon_2 \to 0\) as
\(\Delta x \to 0\) and
\(\Delta y \to 0\text{.}\) Combining Equations
(3.2.6) and
(3.2.7) gives
\begin{equation*}
\Delta u=(u_x+\varepsilon_1) \Delta x+(u_y+\varepsilon_2) \Delta y\text{.}
\end{equation*}
where partial derivatives \(u_x\) and \(u_y\) are evaluated at the point \((x_0,y_0)\) and \(\varepsilon_1\) and \(\varepsilon_2\) tend to zero as \(\Delta x\) and \(\Delta y\) both tend to zero. Similarly, the change \(\Delta v\) is related to the changes \(\Delta x\) and \(\Delta y\) by the equation
\begin{equation*}
\Delta v=(v_x+\varepsilon_3) \Delta x+(v_y+\varepsilon_4) \Delta y\text{,}
\end{equation*}
where the partial derivatives \(v_x\) and \(v_y\) are evaluated at the point \((x_0,y_0)\) and \(\varepsilon_3\) and \(\varepsilon_4\) tend to zero as \(\Delta x\) and \(\Delta y\) both tend to zero. Combining these last two equations gives
\begin{equation}
\Delta w=u_x\Delta x+u_y\Delta y+i(v_x\Delta x+v_y\Delta y) + \varepsilon_1\Delta x + \varepsilon_2\Delta y+i(\varepsilon_3\Delta x+\varepsilon_4\Delta y)\text{.}\tag{3.2.8}
\end{equation}
We can use the Cauchy-Riemann equations in Equation
(3.2.8) to obtain
\begin{equation*}
\Delta w=u_x\Delta x-v_x\Delta y+i(v_x\Delta x+u_x\Delta y) + \varepsilon_1\Delta x + \varepsilon_2\Delta y+i(\varepsilon_3\Delta x+\varepsilon_4\Delta y)
\end{equation*}
Now we rearrange the terms and get
\begin{equation*}
\Delta w=u_x\left[ \Delta x+i\Delta y\right] +iv_x[\Delta x+i\Delta y] + \varepsilon_1\Delta x+\varepsilon_2\Delta y+i(\varepsilon_3\Delta x+\varepsilon_4\Delta y)
\end{equation*}
Since \(\Delta z= \Delta x+i\Delta y\text{,}\) we can divide both sides of this equation by \(\Delta z\) and take the limit as \(\Delta z \to 0\text{:}\)
\begin{equation}
\lim_{\Delta z \to 0}\frac{\Delta w}{\Delta z} = u_x+iv_x+\lim_{\Delta z \to 0}\left[\frac{\varepsilon_1\Delta x}{\Delta z} + \frac{\varepsilon_2\Delta y}{\Delta z} + i\frac{\varepsilon_3\Delta x}{\Delta z}+i\frac{\varepsilon_4\Delta y}{\Delta z}\right]\text{.}\tag{3.2.9}
\end{equation}
Because \(\varepsilon_1\) tends to zero as \(\Delta x\) and \(\Delta y\) both tend to zero, we have
\begin{equation*}
\lim_{\Delta z \to 0}\left|\frac{\varepsilon_1\Delta x}{\Delta z}\right| = \lim_{\Delta z \to 0}\big|\varepsilon_1\big|\left|\frac{\Delta x}{\Delta z}\right| \le \lim_{\Delta z \to 0}\big|\varepsilon_1\big|=0\text{.}
\end{equation*}
Similarly, the limits of the other quantities in Equation
(3.2.9) involving
\(\varepsilon_2\text{,}\) \(\varepsilon_3\text{,}\) \(\varepsilon_4\) are zero. Therefore the limit in Equation
(3.2.9) becomes
\begin{equation*}
\lim_{\Delta z \to 0}\frac{\Delta w}{\Delta z}=f\,'(z_0) =u_x(x_0,y_0) +iv_x(x_0,y_0)\text{,}
\end{equation*}
which completes the proof of the theorem.