Let \(K\) be chosen large enough so that both \(f(t)\) and \(f\,'(t)\) are of exponential order \(K\text{.}\) If \(\mathrm{Re}(s)>K\text{,}\) then \(\mathcal{L}\big(\,f\,'(t)\big)\) is given by
\begin{equation*}
\mathcal{L}(\,f\,'(t)) = \int_0^{\infty}f\,'(t)e^{-st}\,dt\text{.}
\end{equation*}
Next, using integration by parts, we can write the equation this as
\begin{equation*}
\mathcal{L}\big(f\,'(t)\big) = \lim_{R \to +\infty}\left[f(t) e^{-st}\right]\Big|_{t=0}^{t=R}+s\int_0^{\infty}f(t)e^{st}\,dt\text{.}
\end{equation*}
Now, \(f(t)\) is of exponential order \(K\text{,}\) and \(\mathrm{Re}(s)>K\text{.}\) It follows that \(\lim\limits_{R \to +\infty}f(R)e^{-sR}=0\text{,}\) so
\begin{equation*}
\mathcal{L}\big(f\,'(t)\big) = -f(0) + s\int_0^{\infty}f(t)e^{-st}\,dt = sF(s) - f(0)
\end{equation*}