Skip to main content

Complex Analysis an Open Source Textbook

Section 11.8 Multiplication and Division by \(t\)

Sometimes the solutions to nonhomogeneous linear differential equations with constant coefficients involve the functions \(t\cos bt\text{,}\) \(t\sin bt\text{,}\) or \(t^ne^{at}\) as part of the solution. We now show how the Laplace transforms of \(tf(t)\) and \(\frac{f(t)}{t}\) are related to the Laplace transform of \(f(t)\text{.}\) The transform of \(tf(t)\) will be obtained via differentiation and the transform of \(\frac{f(t)}{t}\) will be obtained via integration. To be precise, we state the following theorems.

Proof.

By definition we have \(F(s) = \int_0^{\infty}f(t)e^{-st}\,dt\text{.}\) Leibniz’s rule for partial differentiation under the integral sign permits us to write
\begin{align*} F\,'(s) \amp = \frac{\partial }{\partial s}\int_0^{\infty}f(t)e^{-st}\,dt\\ \amp = \int_0^{\infty}\frac{\partial }{\partial s}[f(t)e^{-st}]\,dt\\ \amp = \int_0^{\infty}[-tf(t) e^{-st}]\,dt\\ \amp = -\int_0^{\infty}tf(t) e^{-st}dt\\ \amp = -\mathcal{L}\big(tf(t)\big) \text{.} \end{align*}

Proof.

Since \(F(\sigma) = \int_0^{\infty}f(t) e^{-\sigma t}\,dt\text{,}\) we integrate \(F(\sigma)\) from \(s\) to \(\infty\text{:}\)
\begin{equation*} \int_s^{\infty}F(\sigma ) d\sigma =\int_0^{\infty}\left[\int_0^{\infty}f(t) e^{-\sigma t}\,dt\right]d\sigma\text{.} \end{equation*}
The order of integration in equation in the double integral is reversed:
\begin{align*} \int_s^{\infty}F(\sigma )\,d\sigma \amp = \int_0^{\infty}\left[\int_s^{\infty}f(t) e^{-\sigma t}d\sigma\right]dt\\ \amp = \int_0^{\infty}\left[\frac{-f(t)}{t}e^{-\sigma t}\Big|_{\sigma =s}^{\sigma =\infty}\right]dt\\ \amp = \int_0^{\infty}\frac{f(t)}{t}e^{-st}\,dt\\ \amp = \mathcal{L}\left(\frac{f(t)}{t}\right)\text{.} \end{align*}

Example 11.8.3.

Show that \(\mathcal{L}(t\cos bt) =\frac{s^2-b^2}{(s^2+b^2)^2}\text{.}\)
Solution.
Let \(f(t) =\cos bt\text{,}\) then \(F(s) =\mathcal{L}(\cos bt) = \frac{s}{s^2+b^2}\text{.}\) Hence, we can differentiate \(F(s)\) to obtain the desired result:
\begin{equation*} \mathcal{L}(t\cos bt) =-F\,'(s) =-\frac{s^2+b^2-2s^2}{(s^2+b^2)^2}=\frac{s^2-b^2}{(s^2+b^2)} \end{equation*}

Example 11.8.4.

Show that \(\mathcal{L}(\frac{\sin t}{t}) =\arctan \frac{1}{s}\text{.}\)
Solution.
Let \(f(t) = \sin t\) and \(F(s) =\frac{1}{s^2+1}\text{.}\) Since \(\lim\limits_{t \to 0^+}\frac{\sin t}{t}=1\text{,}\) we can integrate \(F(s)\) to obtain the desired result:
\begin{equation*} \mathcal{L}\left(\frac{\sin t}{t}\right) = \int_s^{\infty}\frac{d\sigma}{\sigma^2+1} = \left.-\arctan \frac{1}{\sigma }\right|_{\sigma =s}^{\sigma =\infty} = \arctan \frac{1}{s}\text{.} \end{equation*}
Some types of differential equations involve the terms \(ty\,'(t)\) or \(ty\,''(t)\text{.}\) Laplace transforms can be used to find the solution if we use the additional substitutions
\begin{align} \mathcal{L}\big(ty\,'(t)\big) \amp = -sY\,'(s) - Y(s), \text{ and }\tag{11.8.1}\\ \mathcal{L}\big(ty\,''(t)\big) \amp = -s^2Y\,'(s) - 2sY(s) + y(0)\text{.}\tag{11.8.2} \end{align}

Example 11.8.5.

Use Laplace transforms to solve the initial value problem
\begin{equation*} ty\,''(t) - ty\,'(t) - y(t) = 0 \text{ with } y(0) =0\text{.} \end{equation*}
Solution.
Let \(Y(s)\) denote the Laplace transform of \(y(t)\text{,}\) then using the substitutions (11.8.1) and (11.8.2) results in
\begin{equation} -s^2Y\,'(s) -2sY(s) +0+sY\,'(s) + Y(s) - Y(s) = 0\text{.}\tag{11.8.3} \end{equation}
This equation involves \(Y\,'(s)\) and can be written as a first-order linear differential equation:
\begin{equation} Y\,'(s) + \left(\frac{2}{s-1}\right)Y(s) = 0\text{.}\tag{11.8.4} \end{equation}
The integrating factor \(\rho\) for the differential equation is
\begin{equation*} \rho = \exp\left(\int \frac{2}{s-1}\,ds\right) = e^{2\ln (s-1)}=(s-1)^2\text{.} \end{equation*}
Multiplying Equation (11.8.4) by \(\rho\) produces
\begin{equation*} (s-1)^2Y\,'(s) +2(s-1) Y(s) = \frac{d}{ds}\big[(s-1)^2Y(s)\big] = 0\text{.} \end{equation*}
Now we integrate the equation \(\frac{d}{ds}\big[(s-1)^2Y(s)\big] = 0\) with respect to \(s\) and the results is \((s-1)^2Y(s) =C\text{,}\) where \(C\) is the constant of integration. Hence the solution to Equation (11.8.3) is
\begin{equation*} Y(s) = \frac{C}{(s-1)^2}\text{.} \end{equation*}
The inverse of the transform \(Y(s)\) in equation is the desired solution
\begin{equation*} y(t) = Cte^t \end{equation*}

Exercises Exercises

1.

Find the Laplace transform for each of the following:
(a)
\(\mathcal{L}(te^{-2t})\text{.}\)
Solution.
\(\mathcal{L}(te^{-2t}) = \frac{1}{(s+2)^2}\text{.}\)
(b)
\(\mathcal{L}(t^2e^{4t})\text{.}\)
(c)
\(\mathcal{L}(t\sin 3t)\text{.}\)
Solution.
\(\mathcal{L}(t\sin 3t) = \frac{6s}{(s^2+9)^2}\text{.}\)
(d)
\(\mathcal{L}(t^2\cos 2t)\text{.}\)
(e)
\(\mathcal{L}(t\sinh t)\text{.}\)
Solution.
\(\mathcal{L}(t\sinh t) = \frac{2s}{(s^2-1)^2}\text{.}\)
(f)
\(\mathcal{L}(t^2\cosh t)\text{.}\)

2.

Show that \(\mathcal{L}(\frac{1-\cos t}{t}) = \ln \frac{s^2}{s^2+1}\text{.}\)

3.

Show that \(\mathcal{L}(\frac{e^t-1}{t}) = \ln \frac{s}{s-1}\text{.}\)

4.

Find \(\mathcal{L}(te^{at}\cos bt)\text{.}\)

5.

Find \(\mathcal{L}(t\sin bt)\text{.}\)
Solution.
\(\mathcal{L}(t\sin bt) = \frac{2bs}{(s^2+b^2)^2}\text{.}\)

6.

Find \(\mathcal{L}^{-1}(\ln \frac{s}{s+1})\text{.}\)

7.

Find \(\mathcal{L}^{-1}\big(\ln \frac{s^2+1}{(s-1)^2}\big)\text{.}\)
Solution.
\(\mathcal{L}^{-1}\Big(\ln \frac{s^2+1}{(s-1)^2}\Big) = \frac{2(e^t-\cos t)}{t}\text{.}\)

8.

Solve the initial value problem for each of the following:
(a)
\(y\,''(t) +2y\,'(t) + y(t) = 2e^{-t}\text{,}\) with \(y(0) = 0\) and \(y\,'(0) = 1\text{.}\)
Solution.
\(y(t) = te^{-t}+t^2e^{-t}\text{.}\)
(b)
\(y\,''(t) + y(t) = 2\sin t\text{,}\) with \(y(0) = 0\) and \(y\,'(0) = -1\text{.}\)
(c)
\(ty\,''(t) - ty\,'(t) - y(t) = 0\text{,}\) with \(y(0) = 0\text{.}\)
Solution.
\(y(t) = Cte^t\text{.}\)
(d)
\(ty\,''(t) + (t-1)y\,'(t) - 2y(t) = 0\text{,}\) with \(y(0) = 0\text{.}\)
(e)
\(ty\,''(t) + ty\,'(t) - y(t) = 0\text{,}\) with \(y(0) = 0\text{.}\)
Solution.
\(y(t) = Ct\text{.}\)
(f)
\(ty\,''(t) + (t-1)y\,'(t) + y(t) = 0\text{,}\) with \(y(0) = 0\text{.}\)

9.

Solve the Laguerre equation \(ty\,''(t) + (1-t)y\,'(t) + y(t) = 0\text{,}\) with \(y(0) = 1\text{.}\)
Solution.
\(y(t) = 1-t\text{.}\)

10.

Solve the Laguerre equation \(ty\,''(t) + (1-t)y\,'(t) + 2y(t) = 0\text{,}\) with \(y(0) = 1\text{.}\)