Show that the transformation \(w = \tan z\) is a one-to-one conformal mapping of the vertical strip \(|x|\lt \frac{\pi}{4}\) onto the unit disk \(|w| \lt 1\text{.}\)
Solution.
\begin{equation*}
w=\tan z = \frac{1}{i}\frac{e^{iz} - e^{-iz}}{e^{iz}+e^{-iz}} = \frac{-ie^{i2z}+i}{e^{i2z}+1}
\end{equation*}
. Then, mapping \(w=\tan z\) can be considered to be the composition
\begin{equation*}
w = \frac{-iZ+i}{Z+1}, \text{ and } Z = e^{i2z}\text{.}
\end{equation*}
The function \(Z=\exp(i2z)\) maps the vertical strip \(|x| \lt \frac{\pi}{4}\) one-to-one and onto the right half-plane \(\mathrm{Re}(Z) >0\text{.}\) Then the bilinear transformation given by \(w = \frac{-iZ+i}{Z+1}\) maps the half-plane one-to-one and onto the disk, as shown in Figure 9.4.1.