Since \(u(x,y)\) is harmonic in the simply connected domain, there exists a conjugate harmonic function \(v(x,y)\) such that \(f(z)=u(x,y)+iv(x,y)\) is analytic. Let \(C\) denote the contour consisting of the unit circle; then Cauchy ’s integral formula
\begin{equation}
f(z) = \frac{1}{2\pi i}\int\nolimits_c\frac{f(\xi)}{\xi -z}\,d\xi\tag{11.2.4}
\end{equation}
expresses the value of \(f(z)\) at any point \(z\) inside \(C\) in terms of the values of \(f(\xi)\) at points \(\xi\) that lie on the circle \(C\text{.}\) If we set \(z^{\ast } = (\overline{z})^{-1}\) then \(z^*\) lies outside the unit circle \(C\) and the Cauchy-Goursat theorem gives
\begin{equation}
0 = \frac{1}{2\pi i}\int_c\frac{f(\xi )}{\xi -z^{\ast }}\,d\xi\text{.}\tag{11.2.5}
\end{equation}
If we subtract Equation
(11.2.5) from Equation
(11.2.4), then use the parameterization
\(\xi =e^{it}\text{,}\) \(d\xi =ie^{it}\,dt\) and the substitutions
\(z=re^{i\theta}\text{,}\) \(z^{\ast }=\frac{1}{r}e^{i\theta}\text{,}\) we get
\begin{equation*}
f(z) = \frac{1}{2\pi}\int_{-\pi}^{\pi}\left(\frac{e^{it}}{e^{it}-re^{i\theta}} - \frac{e^{it}}{e^{it}-\frac{1}{r}e^{i\theta}}\right)f(e^{it})\,dt\text{.}
\end{equation*}
The expression inside the parentheses on the right side of this equation can be written as
\begin{align}
\frac{e^{it}}{e^{it}-re^{i\theta}}-\frac{e^{it}}{e^{it}-\frac{1}{r} e^{i\theta}} \amp = \frac{1}{1-re^{i(\theta -t)}} + \frac{re^{i(t-\theta )}}{1-re^{i(t-\theta)}}\notag\\
\amp = \frac{1-r^2}{1+r^2-2r\cos (t-\theta )}\text{,}\tag{11.2.6}
\end{align}
and it follows that
\begin{equation*}
f(z) = \frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{(1-r^2)f(e^{it})}{1+r^2-2r\cos (t-\theta)}\,dt\text{.}
\end{equation*}
Since
\(u(x,y)\) is the real part of
\(f(z)\) and
\(U(t)\) is the real part of
\(f(e^{it})\text{,}\) we can equate the real parts in the latter equation to obtain Equation
(11.2.3), completing the proof
Theorem 11.2.3.