Theorem 8.4.1.
Let \(P\) and \(Q\) be polynomials with real coefficients of degree \(m\) and \(n\text{,}\) respectively, where \(n \ge m+1\) and \(Q(x) \ne 0\text{,}\) for all real \(x\text{.}\) If \(\alpha>0\) and
\begin{equation}
f(z) = \frac{\exp(i\alpha z)P(z)}{Q(z)}\text{.}\tag{8.4.1}
\end{equation}
then
\begin{align}
\text{ P.V. } \int_{-\infty}^{\infty}\frac{P(x)}{Q(x)}\cos(\alpha x)\,dx \amp = -2\pi\sum \limits_{j=1}^k \mathrm{Im}(\mathrm{Res}[f,z_j]), \text{ and }\tag{8.4.2}\\
\text{ P.V. } \int_{-\infty}^{\infty}\frac{P(x)}{Q(x)}\sin(\alpha x)\,dx \amp = 2\pi\sum \limits_{j=1}^k\mathrm{Re}(\mathrm{Res}[f,z_j])\text{,}\tag{8.4.3}
\end{align}
where \(z_1, \, z_2, \, \ldots, \, z_{k-1}, \, z_k\) are the poles of \(f\) that lie in the upper half-plane, and \(\mathrm{Re}(\mathrm{Res}[f,z_j])\) and \(\mathrm{Im}(\mathrm{Res}[f,z_j])\) are the real and imaginary parts of \(\mathrm{Res}[f,z_j]\text{,}\) respectively.