Skip to main content

Complex Analysis

Section 11.10 Convolution

Let \(F(s)\) and \(G(s)\) denote the transforms of \(f(t)\) and \(g(t)\text{,}\) respectively. Then the inverse of the product \(F(s)G(s)\) is given by the function \(h(t) =(f\ast g)(t)\) and is called the convolution of \(f(t)\) and \(g(t)\) and can be regarded as a generalized product of \(f(t)\) and \(g(t)\text{.}\) Convolutions are helpful in solving integral equations.

Proof.

The following proof is given for the special case when \(s\) is a real number. The general case is covered in advanced texts. Using the dummy variables \(\sigma\) and \(\tau\) and the integrals defining the transforms, we can express their product as
\begin{equation*} F(s)G(s) = \left[\int_0^{\infty}f(\sigma) e^{-s\sigma}\,d\sigma\right]\left[\int_0^{\infty}g(\tau)e^{-s\tau}\,d\tau\right]\text{.} \end{equation*}
The product of integrals in this equation can be written as an iterated integral:
\begin{equation*} F(s)G(s) = \int_0^{\infty}\left[\int_0^{\infty}f(\sigma)e^{-s(\sigma+\tau)}\,d\sigma\right]g(\tau)\,d\tau\text{.} \end{equation*}
Hold \(\tau\) fixed, and use the change of variables \(t=\sigma +\tau\) and \(dt=d\sigma\text{.}\) Then the inner integral in the equation can be rewritten to obtain
\begin{align*} F(s)G(s) \amp = \int_0^{\infty}\left[\int_{\tau }^{\infty}f(t-\tau)e^{-st}\,dt\right]g(\tau)\,d\tau\\ \amp = \int_0^{\infty}\left[\int_{\tau }^{\infty}f(t-\tau)g(\tau)e^{-st}dt\right]d\tau\text{.} \end{align*}
The region of integration for this last iterated integral is the wedge-shaped region in the \((t,\tau)\) plane shown in Figure 11.10.2.
Figure 11.10.2. The region of integration in the convolution theorem
The order of integration in the integral can be reversed to get:
\begin{equation*} F(s)G(s) = \int_0^{\infty}\left[\int_0^tf(t-\tau)g(\tau)e^{-st}\,d\tau\right]dt\text{.} \end{equation*}
This equation can be written as
\begin{align*} F(s)G(s) \amp = \int_0^{\infty}\left[\int_0^tf(t-\tau)g(\tau)\,d\tau\right]e^{-st}\,dt\\ \amp = \mathcal{L}^{-1}\left(\int_0^tf(t-\tau)g(\tau)\,d\tau\right)\text{,} \end{align*}
which establishes Equation (11.10.2). Since we can interchange the role of the functions \(f(t)\) and \(g(t)\text{,}\) Equation (11.10.1) follows immediately.
Table 11.10.3 summarizes some important convolution properties.
Table 11.10.3. Convolution Properties
Commutativity \(f\ast g=g\ast f\)
Distributivity \(f\ast (g+h) =f\ast g+f\ast h\)
Associativity \((f\ast g) \ast h=f\ast (g\ast h)\)
Zero \(f\ast 0=0\)

Example 11.10.4.

Show that \(\mathcal{L}^{-1}\left(\frac{2s}{(s^2+1)^2}\right) = t\sin t\text{.}\)
Solution.
Let \(F(s) = \frac{1}{s^2+1}\text{,}\) \(G(s) =\frac{2s}{s^2+1}, \, f(t) = \sin t, \, g(t) =2\cos t\text{,}\) respectively. Applying the convolution theorem we get
\begin{align*} \mathcal{L}^{-1}\left(\frac{1}{s^2+1}\frac{2s}{s^2+1}\right) \amp = \mathcal{L}^{-1}\big(F(s)G(s)\big)\\ \amp = \int_0^t2\sin(t-\tau) \cos \tau\,d\tau\\ \amp = \int_0^t[2\sin t\cos^2\tau -2\cos t\sin \tau \cos \tau]\,d\tau\\ \amp = \left[\sin t(\tau +\sin \tau \cos \tau ) - \cos t\sin^2\tau\right]\Big|_{\tau =0}^{\tau =t}\\ \amp = t\sin t+\sin^2t\cos t-\cos t\sin^2t\\ \amp = t\sin t\text{.} \end{align*}

Example 11.10.5.

Use the convolution theorem to solve the integral equation
\begin{equation*} f(t) = 2\cos t-\int_0^t(t-\tau)f(\tau)\,d\tau\text{.} \end{equation*}
Solution.
Letting \(F(s) =\mathcal{L}\big(f(t)\big)\) and using \(\mathcal{L}(t) = \frac{1}{s^2}\) in the convolution theorem we obtain
\begin{equation*} F(s) = \frac{2s}{s^2+1} - \frac{1}{s^2}F(s)\text{.} \end{equation*}
Solving for \(F(s)\) we get
\begin{equation*} F(s) = \frac{2s^3}{(s^2+1)^2} = \frac{2s}{s^2+1} - \frac{2s}{(s^2+1)^2}\text{,} \end{equation*}
and the solution is
\begin{equation*} f(t) = 2\cos t - t\sin t\text{.} \end{equation*}
Engineers and physicists sometimes consider forces that produce large effects that are applied over a very short time interval. The force acting at the time an earthquake starts is an example. This leads to the idea of a unit impulse function \(\delta(t)\text{.}\) Consider a small positive constant \(a\text{.}\) The function \(\delta_a(t)\) is defined by
\begin{equation*} \delta_a(t) = \begin{cases}\frac{1}{a} \amp \text{for} \quad 0\lt t\lt a,\\ \, 0 \amp \text{otherwise}. \end{cases} \end{equation*}
The unit impulse function is obtained by letting the interval width go to zero, i.e.,
\begin{equation*} \delta(t) = \lim_{a \to 0}\delta_a(t). \end{equation*}
Figure 11.10.6 shows the graph of \(\delta_a(t)\) for \(a=10, \, 40\text{,}\) and \(100\text{.}\) Although \(\delta(t)\) is called the Dirac delta function, it is not an ordinary function. To be precise it is a distribution, and the theory of distributions permits manipulations of \(\delta(t)\) as though it were a function. For our work, we will treat \(\delta(t)\) as a function and investigate its properties.
Figure 11.10.6. Graphs of \(y=\delta_a(t)\) for \(a=10\text{,}\) \(40\text{,}\) and \(100\)

Example 11.10.7.

Show that \(\mathcal{L}\big(\delta(t)\big) = 1\text{.}\)
Solution.
By definition, the Laplace transform of \(\delta_a(t)\) is
\begin{equation*} \mathcal{L}\big(\delta_a(t)\big) = \int_0^{\infty}\delta_a(t)e^{-st}\,dt = \int_0^{a}\frac{1}{a}e^{-st}\,dt = \frac{1-e^{-sa}}{sa}\text{.} \end{equation*}
Letting \(a \to 0\) in equation, and using L’Hôpital’s rule, we obtain
\begin{equation*} \mathcal{L}\big(\delta(t)\big) = \lim_{a \to 0}\mathcal{L}\big(\delta_a(t)\big) = \lim\limits_{a \to 0}\frac{1-e^{-sa}}{sa}=\lim\limits_{a \to 0}\frac{0+se^{-sa}}{s} = 1\text{.} \end{equation*}
We now turn our attention to the unit impulse function. First, consider the function \(f_a(t)\) obtained by integrating \(\delta_a(t)\text{:}\)
\begin{equation*} f_a(t) = \int_0^t\delta_a(\tau )\,d\tau = \begin{cases} \, 0 \amp \text{for} \quad t \lt 0,\\ \frac{t}{a} \amp \text{for} \quad 0 \le t \le a,\\ \, 1 \amp \text{for} \quad a \lt t. \end{cases} \end{equation*}
Then it is easy to see that \(U_0(t) =\lim\limits_{a \to 0}f_a(t)\) (see Figure 11.10.8).
Figure 11.10.8. The integral of \(\delta_a(t)\) is \(f_a(t)\text{,}\) which becomes \(U_0(T)\text{,}\) which becomes \(U_0(t)\) when \(a \to 0\)
The response of a system to the unit impulse function is illustrated in the next example.

Example 11.10.9.

Solve the initial value problem
\begin{equation*} y\,''(t)+4y\,'(t)+13y(t)=3\delta(t), \quad \text{with} \quad y(0) =0 \quad \text{and} \quad y\,'(0^-) = 0\text{.} \end{equation*}
Solution.
Taking transforms results in \((s^2+4s+13)Y(s) = 3\mathcal{L}(\delta (t)) = 3\text{,}\) so that
\begin{equation*} Y(s) = \frac{3}{s^2+4s+13}=\frac{3}{(s+2)^2+3^2}\text{,} \end{equation*}
so the solution iso
\begin{equation*} y(t)=e^{-2t}\sin 3t\text{.} \end{equation*}
Note: The condition \(y\,'(0^-) =0\) is not satisfied by the “solution” \(y(t)\text{.}\) Recall that all solutions using the Laplace transform are to be considered zero for values of \(t\lt 0\text{.}\) Hence the graph of \(y(t)\) is given in Figure 11.10.10.
Figure 11.10.10. The solution \(y=y(t)\) to Example 11.10.9
We see that \(y,'(t)\) has a jump discontinuity of magnitude \(+3\) at the origin. This happens because either \(y(t)\) or \(y\,'(t)\) must have a jump discontinuity at the origin whenever the Dirac delta function occurs as part of the input or driving function.
We now illustrate how the convolution method can be used to solve initial value problems.

Example 11.10.11. IVP Convolution Method.

Show initial value problem
\begin{equation*} ay\,''(t) + by\,'(t) + cy(t) = g(t), \quad \text{with} \quad y(0) = y_0 \quad \text{and} \quad y\,'(0) = y_1 \end{equation*}
has the unique solution
\begin{equation*} y(t) = u(t) + (h\ast g)(t)\text{,} \end{equation*}
where \(u(t)\) is the solution to the homogeneous equation
\begin{equation*} au\,''(t) + bu\,'(t) + cu(t) = 0, \quad \text{with} \quad u(0) = y_0 \quad \text{and} \quad u'(0) = y_1\text{,} \end{equation*}
and \(h(t)\) is the function whose Laplace transform given by \(H(s) = \frac{1}{as^2+bs+c}\text{.}\)
Solution.
The particular solution is found by solving the equation
\begin{equation*} av\,''(t) + bv\,'(t) + cv(t) = g(t), \quad \text{with} \quad v(0) = 0 \quad \text{and} \quad v\,'(0) = 0\text{.} \end{equation*}
Taking the Laplace transform of both sides of this equation produces
\begin{equation*} as^2V(s) + bsV(s) + cV(s) = G(s)\text{.} \end{equation*}
Solving for \(V(s)\) in the latter equation yields \(V(s)=\frac{1}{as^2+bs+c}G(s)\text{.}\) If we set \(H(s) =\frac{1}{as^2+bs+c}\text{,}\) then \(V(s) =H(s)G(s)\text{,}\) and the particular solution is given by the convolution
\begin{equation*} v(t) = (h\ast g)(t)\text{.} \end{equation*}
The general solution is \(y(t) = u(t) + v(t) = u(t) + (h\ast g)(t)\text{.}\) To verify that the initial conditions are met we compute
\begin{align*} y(0) \amp = u(0) + v(0) = y_0 + i0 = y_0, \quad \text{and}\\ y\,'(0) \amp = u\,'(0) +v\,'(0) = y_1 + 0 = y_1\text{.} \end{align*}

Example 11.10.12.

Use the convolution method to solve the IVP
\begin{equation*} y\,''(t) + y(t) = \tan t, \quad \text{with} \quad y(0) = 1 \quad \text{and} \quad y\,'(0) = 2\text{.} \end{equation*}
Solution.
First solve \(u''(t) + u(t) = 0\) with \(u(0) = 1\) and \(u'(0) = 2\text{.}\) Taking the Laplace transform yields \(s^2U(s) - s- 2 + U(s) = 0\text{.}\) Solving for \(U(s)\) gives \(U(s) = \frac{s+2}{s^2+1}\text{,}\) and it follows that
\begin{equation*} u(t) = \cos t + 2\sin t\text{.} \end{equation*}
Second, observe that \(H(s) = \frac{1}{s^2+1}\) and \(h(t) = \sin t\text{,}\) so that
\begin{align*} v(t) \amp = (h\ast g) (t) = \int_0^t\sin(t-s) \tan(s)\,ds\\ \amp = \left.\left[\cos (t) \ln \frac{\cos s}{1+\sin s}-\sin (t-s)\right]\right|_{s=0}^{s=t}\\ \amp = \cos (t) \ln \frac{\cos t}{1+\sin t}+\sin (t)\text{.} \end{align*}
Therefore, the solution is
\begin{equation*} y(t) = u(t) + v(t) = \cos t + 3\sin t + \cos(t) \ln \frac{\cos t}{1+\sin t}\text{.} \end{equation*}

Exercises Exercises

1.

Find the indicated convolution for each of the following:
(a)
\(t \ast t\text{;}\)
Solution.
\(f(t)=t, \; g(t)=t, \quad\) and \((f \ast g)(t) = \int_0^tf(\tau)g(t-\tau)\,d\tau = \int_0^t\tau(t-\tau)\,d\tau = \frac{t^3}{6}\text{.}\)
(c)
\(e^t\ast e^{2t}\text{;}\)
Solution.
\(f(t)=e^t, \, g(t)=e^{2t}, \quad\) and \(\quad (g \ast f)(t) = \int_0^te^{2\tau }e^{t-\tau}\,d\tau = -e^t+e^{2t} \text{.}\)
(d)
\(\sin t\ast \sin 2t\text{.}\)

2.

Use convolution to find \(\mathcal{L}^{-1}\big(F(s)\big)\) for each of the following:
(a)
\(F(s) =\frac{2}{(s-1)(s-2)}\text{;}\)
Solution.
\(f(t)=\mathcal{L}^{-1}\Big(\frac{2}{(s-1)(s-2)}\Big)=-2e^t+2e^{2t}\text{.}\)
(b)
\(F(s) = \frac{6}{s^3}\text{;}\)
(c)
\(F(s) = \frac{1}{s(s^2+1)}\text{;}\)
Solution.
\(f(t)=\mathcal{L}^{-1}\Big(\frac{1}{s(s^2+1)}\Big) = 1 - \cos t\text{.}\)
(d)
\(F(s) = \frac{s}{(s^2+1)(s^2+4)}\text{.}\)

3.

Prove the distributive law for convolution: \(f\ast (g+h) = f\ast g+f\ast g\text{.}\)
Solution.
Proof:
\begin{align*} f \ast(g+h) \amp = \int_0^tf(\tau)(g+h)(t-\tau)\,d\tau\\ \amp = \int_0^tf(\tau)g(t-\tau)\,d\tau + \int_{0}^tf(\tau)h(t-\tau )d\tau\\ \amp = f\ast g+f\ast g. \end{align*}

4.

Use the convolution theorem and mathematical induction to show that
\begin{equation*} \mathcal{L}^{-1}\left(\frac{1}{(s-a)^n}\right) = \frac{1}{(n-1)!}t^{n-1}e^{at}. \end{equation*}

5.

Find \(\mathcal{L}^{-1}(\frac{s}{s-1})\text{.}\)
Solution.
\(f(t) = \mathcal{L}^{-1}\big(\frac{s}{s-1}) = e^t+\delta (t)\text{.}\)

6.

Find \(\mathcal{L}^{-1}(\frac{s^2}{s^2+1})\text{.}\)

7.

Use the convolution theorem to solve the initial value problem
\begin{equation*} y\,''(t) +y(t) = 2\sin t, \quad \text{with} \quad y(0) = 0 \quad \text{and} \quad y\,'(0) = 0 \text{.} \end{equation*}
Solution.
\(y(t) = -t\cos t+\sin t\text{.}\)

8.

Use the convolution theorem to show that the solution to the initial value problem
\begin{equation*} y\,''(t) + \omega^2y(t) = f(t),\quad \text{with} \quad y(0) = 0 \quad \text{and} \quad y\,'(0)=0 \end{equation*}
is
\begin{equation*} y(t) = \frac{1}{\omega}\int_0^tf(\tau)\sin[\omega(t-\tau )]\,d\tau. \end{equation*}

9.

Find \(\mathcal{L}\left(\int_0^te^{-\tau }\cos (t-\tau)\,d\tau\right)\text{.}\)
Solution.
\(\mathcal{L}\left(\int_{0}^te^{-\tau}\cos(t-\tau)\,d\tau \right) = \mathcal{L}(e^t) \mathcal{L}\big(\cos(t)\big) = \frac{s}{(s+1)(s^2+1)}.\)

10.

Find \(\mathcal{L}\left(\int_0^t(t-\tau )^2e^{\tau}\,d\tau\right)\text{.}\)

11.

Let \(F(s) =\mathcal{L}\big(f(t)\big)\text{.}\) Use convolution to show that
\begin{equation*} \mathcal{L}^{-1}\left(\frac{F(s)}{s}\right) = \int_0^tf(\tau)\,d\tau. \end{equation*}
Solution.
Given \(F(s) = \mathcal{L}\big(f(t)\big)\) and \(G(s)=\mathcal{L}(1) = \frac{1}{s}\) and \(g(t)=1\text{,}\) we have
\begin{align*} \mathcal{L}^{-1}\left(\frac{F(s)}{s}\right) \amp = F(s)G(s)\\ \amp = (f \ast g)(t)\\ \amp = \int_0^tf(\tau)g(t-\tau)\,d\tau\\ \amp = \int_{0}^tf(\tau)\,d\tau. \end{align*}

12.

Use the convolution theorem to solve the following integral equations:
(a)
\(f(t) = e^t + \int_0^te^{t-\tau}f(\tau)\,d\tau\text{;}\)
Solution.
\(F(s) = \frac{1}{s-2}, \quad\) and \(\quad f(t)=e^{2t}\text{.}\)
(b)
\(f(t) + 4\int_0^t(t-\tau)f(\tau)\,d\tau = 2\text{;}\)
(c)
\(6f(t) = 2t^3 + \int_0^t(t-\tau)^3f(\tau)\,d\tau\text{;}\)
Solution.
\(F(s) = \frac{2}{s^{4}-1},\quad\) and \(\quad f(t)=\sinh t-\sin t.\)
(d)
\(f(t) = 2t + \int_0^t\sin(t-\tau)f(\tau)\,d\tau\text{.}\)

13.

Solve the initial value problem for each of the following:
(a)
\(y\,''(t)+2y\,'(t)+y(t)=\delta(t),\)
\(\qquad \text{with} \quad y(0)=0 \quad \text{and} \quad y\,'(0)=0;\)
Solution.
\(y(t) = te^{-t}\text{.}\)
(b)
\(y\,''(t)-2y\,'(t)+5y(t)=2\delta(t),\)
\(\qquad \text{with} \quad y(0)=0 \quad \text{and} \quad y\,'(0)=0;\)
(c)
\(y\,''(t)+4y\,'(t)+3y(t)=2\delta(t-1),\)
\(\qquad \text{with} \quad y(0)=0 \quad \text{and} \quad y\,'(0)=0;\)
Solution.
\(y(t) = (-e^{3-3t} + e^{1-t})U_1(t)\text{.}\)
(d)
\(y\,''(t)+4y\,'(t)+3y(t)=2\delta(t),\)
\(\qquad \text{with} \quad y(0)=0 \quad \text{and} \quad y\,'(0)=0.\)

14.

Use the IVP convolution method to solve the following initial value problems:
(a)
\(y\,''(t)+2y\,'(t)+y(t)=t^4,\)
\(\qquad \text{with} \quad y(0)=1 \quad \text{and} \quad y\,'(0)=2;\)
Solution.
\(y(t) = -21te^{-t} - 119e^{-t} + 120 - 96t + 36t^2 - 8t^3 + t^4\text{.}\)
(b)
\(y\,''(t)-2y\,'(t)+5y(t)=8\exp(-t),\)
\(\qquad \text{with} \quad y(0)=1 \quad \text{and} \quad y\,'(0)=2;\)
(c)
\(y\,''(t)+4y\,'(t)+3y(t)=24t^2e^{-t},\)
\(\qquad \text{with} \quad y(0)=1 \quad \text{and} \quad y\,'(0)=2;\)
(d)
\(y\,''(t)+4y\,'(t)+3y(t)=2te^{-t},\)
\(\qquad \text{with} \quad y(0)=1 \quad \text{and} \quad y\,'(0)=2.\)