Theorem 11.4.1. Fourier Transform.
Let \(U(t)\) and \(U\,'(t)\) be piecewise continuous, and
\begin{equation*}
\int_{-\infty}^{\infty}\left| U(t) \right| dt\lt M\text{,}
\end{equation*}
for some positive constant \(M\text{.}\) The Fourier transform \(F(w)\) of \(U(t)\) is defined as
\begin{equation}
F(w) = \frac{1}{2\pi}\int\nolimits_{-\infty}^{\infty}U(t)e^{-iwt}\,dt\text{.}\tag{11.4.7}
\end{equation}
At points of continuity, \(U(t)\) has the integral representation
\begin{equation*}
U(t) = \int\nolimits_{-\infty}^{\infty}F(w)e^{iwt}\,dw\text{.}
\end{equation*}
and at a point \(t=a\) of discontinuity of \(U\text{,}\) the integral converges to \(\frac{U(a^-)+U(a^+)}{2}\text{.}\)