Evaluate \(\int_0^{2\pi}\frac{1}{1+3\cos^2\theta}\,d\theta\) by using complex analysis.
Solution.
Using Substitutions (8.2.2) and (8.2.3), we transform the integral to
\begin{equation*}
\int\limits_{C_1^{+}(0)}\frac{1}{1+3(\frac{z+z^{-1}}{2})^2}\left(\frac{1}{iz}\right)dz = \int\limits_{C_1^{+}(0)}\frac{-i4z}{3z^4+10z^2+3}\,dz = \int\limits_{C_1^{+}(0)}f(z)\,dz\text{.}
\end{equation*}
where \(f(z) =\frac{-i4z}{3z^4+10z^2+3}\text{.}\) The singularities of \(f\) are poles located at the points where \(3(z^2)^2+10(z^2) +3=0\text{.}\) Using the quadratic formula, we see that the singular points satisfy the relation \(z^2=\frac{-10\pm \sqrt{100-36}}{6 }=\frac{-5\pm 4}{3}\text{.}\) Hence the only singularities that lie inside the unit circle are simple poles corresponding to the solutions of \(z^2=-\frac{1}{3}\text{,}\) which are the two points \(z_1=\frac{i}{\sqrt{3}}\) and \(z_2=-\frac{i}{\sqrt{3}}\text{.}\) We use Theorem 8.1.7 and L’Hôpital’s rule to get the residues at \(z_k\text{,}\) for \(k=1, \, 2\text{:}\)
\begin{align*}
\mathrm{Res}[f,z_k] \amp = \lim_{z \to z_k}\frac{-i4z(z-z_k)}{3z^4+10z^2+3}\\
\amp = \lim_{z \to z_k}\frac{-i4(2z-z_k)}{12z^3+20z}\\
\amp = \frac{-i4z_k}{12z_k^3+20z_k}\\
\amp = \frac{-i}{3z_k^2+5}\text{.}
\end{align*}
Since \(z_k=\frac{\pm i}{\sqrt{3}}\) and \(z_k^2=-\frac{1}{3}\text{,}\) the residues for each \(z_k\) are given by \(\mathrm{Res}[f,z_k] =-\frac{i}{3(-\frac{1}{3})+5} = -\frac{i}{4}\text{.}\) Now use Equation (8.2.4) to compute the value of the integral:
\begin{equation*}
\int_0^{2\pi}\frac{1}{1+3\cos^2\theta}\,d\theta = 2\pi i\left(\frac{-i}{4}+\frac{-i}{4}\right)= \pi
\end{equation*}