Theorem 10.9.1. Schwarz-Christoffel.
Let \(P\) be a polygon in the \(w\) plane with vertices \(w_1,\,w_2, \ldots ,w_n\) and exterior angles \(\alpha_k\text{,}\) where \(-\pi \lt \alpha_k \lt \pi\text{.}\) There exists a one-to-one conformal mapping \(w=f(z)\) from the upper half-plane \(\mathrm{Im}(z)>0\) onto \(G\) that satisfies the boundary conditions in Equations (10.9.1). The derivative \(f\,'(z)\) is
\begin{equation}
f\,'(z) = A(z-x_1)^{-\frac{\alpha_1}{\pi}}(z-x_2)^{-\frac{\alpha_2}{\pi}} \cdots (z-x_{n-1})^{-\frac{\alpha_{n-1}}{\pi}}\text{,}\tag{10.9.2}
\end{equation}
and the function \(f\) can be expressed as an indefinite integral
\begin{equation}
f(z) = B + A\int(z-x_1)^{-\frac{\alpha_1}{\pi}}(z-x_2)^{-\frac{\alpha_2}{\pi}} \cdots (z-x_{n-1})^{-\frac{\alpha_{n-1}}{\pi}}\,dz\text{,}\tag{10.9.3}
\end{equation}
where \(A\) and \(B\) are suitably chosen constants. Two of the points \(\{x_k\}\) may be chosen arbitrarily, and the constants \(A\) and \(B\) determine the size and position of \(P\text{.}\)