Definition 7.1.1. Uniform convergence.
The sequence \(\{S_n(z)\}\) converges uniformly to \(f(z)\) on the set \(T\) if for every \(\varepsilon>0\text{,}\) there exists a positive integer \(N_{\varepsilon}\) (depending only on \(\varepsilon\)) such that
\begin{equation}
\text{ if } n \ge N_{\varepsilon}, \text{ then } |S_n(z) -f(z)| \lt \varepsilon \text{ for all } z \in T\text{.}\tag{7.1.2}
\end{equation}
If \(S_n(z)\) is the \(n\)th partial sum of the series \(\sum\limits_{k=0}^{\infty}c_k(z-\alpha)^k\text{,}\) we say that the series \(\sum\limits_{k=0}^{\infty}c_k(z-\alpha)^k\) converges uniformly to \(f(z)\) on the set \(T\text{.}\)