If we let
\(\frac{1}{z}\) take the role of
\(z\) in Equation
(4.3.1), we get
\begin{equation*}
\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{\!n} = \frac{1}{1-\frac{1}{z}}, \qquad \text{ if } \left|\frac{1}{z}\right| \lt 1\text{.}
\end{equation*}
Multiplying both sides of this equation by \(\frac{1}{z}\) gives
\begin{equation*}
\frac{1}{z}\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{\!n} = \frac{1}{z-1}, \text{ if } \left|\frac{1}{z}\right|\lt 1\text{.}
\end{equation*}
which, by Equation
(4.1.10), is the same as
\begin{equation*}
\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{\! n+1}=\frac{1}{z-1} \text{ if } \left|\frac{1}{z}\right| \lt 1\text{.}
\end{equation*}
But this expression is equivalent to saying that \(\sum\limits_{n=1}^{\infty}(\frac{1}{z})^n=\frac{1}{z-1}\text{,}\) if \(1\lt |z|\text{,}\) which is what the corollary claims.
It is left as an exercise to show that the series diverges if
\(|z| \le 1\text{.}\)