\(U_h(t)=c_1e^{-t}\sin(t) + c_2e^{-t}\cos(t)\text{,}\) \(U_p(t) = \sum\limits_{n=1}^\infty \frac{2(-1)^n}{4+n^4}\cos(nt) + \sum\limits_{n=1}^\infty \frac{(-1)^{n}(n^2-1)}{n(4+n^2)}\sin(nt)\text{,}\) \(U(t)= c_1e^{-t}\sin(t) + c_2e^{-t}\cos(t) + \sum\limits_{n=1}^\infty \frac{2(-1)^n}{4+n^4}\cos(nt) + \sum\limits_{n=1}^\infty \frac{(-1)^n(n^2-2)}{n(4+n^2)}\sin(nt)\text{.}\)
\begin{task}[(c)] \(U_h(t)=c_1e^{-t}\sin(t) + c_2e^{-t}\cos(t)\text{,}\) \(U_p(t) = -\sum\limits_{n=1}^\infty \frac{8\sin(\frac{n\pi}{2})}{n(4+n^2)}\cos(nt) + \sum\limits_{n=1}^\infty \frac{4\sin(\frac{n\pi}{2})(2-n^2)}{n^2(4+n^4)\pi}\sin(nt)\text{,}\) \(U(t)= c_1e^{-t}\sin(t) + c_2e^{-t}\cos(t) + \sum\limits_{n=1}^\infty \frac{2(-1)^n}{4+n^4}\cos(nt) + \sum\limits_{n=1}^\infty \frac{(-1)^n(n^2-2)}{n(4+n^2)}\sin(nt)\text{.}\)
\begin{task}[(c)] Alternative Answer: Alternative Answer: \(U_p(t) = -\sum\limits_{n=1}^\infty \frac{8(-1)^n}{(2n-1)(16n^4-32n^3+24n^20-8n+5)\pi}\cos\big((2n-1)t\big)\) \(+\sum\limits_{n=1}^\infty \frac{4(-1)^n(4n^2-4n-1)}{(2n-1)^2(16n^4-32n^3+24n^20-8n+5)\pi}\sin\big((2n-1)t\big)\text{,}\) \(U(t)=c_1e^{-t}\sin(t)+c_2e^{-t}\cos(t)+\sum\limits_{n=1}^\infty\frac{8(-1)^n}{(2n-1)16n^4-32n^3+24n^20-8n+5)\pi}\cos\big((2n-1)t\big)\) \(+\sum\limits_{n=1}^\infty \frac{4(-1)^n(4n^2-4n-1)}{(2n-1)^2(16n^4-32n^3+24n^20-8n+5)\pi}\sin\big((2n-1)t\big)\text{.}\)