First we solve \(U_h\,''(t) + 2U_h\,'(t) + U_h(t) = 0\) for the transient solution. The characteristic equation is \(\lambda^2+2\lambda +1=0\text{,}\) which has a double root \(\lambda =-1\text{.}\) Hence
\begin{equation*}
U_h(t) = A_1e^{-t} + A_2te^{-t}\text{.}
\end{equation*}
The steady state solution is obtained by assuming that \(U_p(t)\) has the Fourier series representation
\begin{equation*}
U_p(t) =\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos nt+\sum\limits_{n=1}^{\infty}b_n\sin nt\text{,}
\end{equation*}
and that \(U_h\,'(t)\) and \(U_h\,''(t)\) can be obtained by termwise differentiation:
\begin{align*}
2U_p\,'(t) \amp = 2\sum_{n=1}^{\infty}nb_n\cos nt-2\sum\limits_{n=1}^{\infty}na_n\sin nt, \text{ and }\\
U_p\,''(t) \amp = -\sum_{n=1}^{\infty}n^2a_n\cos nt-\sum\limits_{n=1}^{\infty}n^2b_n\sin nt\text{.}
\end{align*}
Substituting these expansions into the differential equation results in
\begin{align*}
F(t) \amp = \frac{a_0}{2} + \sum_{n=1}^{\infty}\big[(1-n^2) a_n+2nb_n\big] \cos nt\\
\amp +\sum\limits_{n=1}^{\infty}\big[-2na_n+(1-n^2) b_n\big] \sin nt\text{.}
\end{align*}